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Toward Load-Balanced Redundancy
Transitioning for Erasure-Coded Storage

Keyun Cheng, Huancheng Puyang, Xiaolu Li, Patrick P. C. Lee, Yuchong Hu, Jie Li, and Ting-Yi Wu

Abstract—Redundancy transitioning enables erasure-coded storage to adapt to varying performance and reliability requirements by
re-encoding data with new coding parameters on-the-fly. Existing studies focus on bandwidth-driven redundancy transitioning that reduces
the transitioning bandwidth across storage nodes, yet the actual redundancy transitioning performance remains bottlenecked by the most
loaded node. We present BART, a load-balanced redundancy transitioning scheme that aims to reduce the redundancy transitioning time
via carefully scheduled parallelization. We show that finding an optimal load-balanced solution is difficult due to the large solution space.
Given this challenge, BART decomposes the redundancy transitioning problem into multiple sub-problems and solves the sub-problems
via efficient heuristics. We evaluate BART using both simulations for large-scale storage and HDFS prototype experiments on Alibaba
Cloud. We show that BART significantly reduces the redundancy transitioning time compared with the bandwidth-driven approach.

✦

1 INTRODUCTION

Practical storage systems must distribute data across nodes,
yet node failures become prevalent as the storage size contin-
ues to scale [15]. Erasure coding is a well-known space-efficient
redundancy technique for fault tolerance and achieves higher
reliability than traditional replication under the same redun-
dancy overhead [42]. In particular, Reed-Solomon (RS) codes
[39] are the most popular erasure code construction deployed
in production [5], [6], [11], [15], [35], [36]. At a high level, RS
codes encode data into multiple erasure-coded stripes, each of
which is independently encoded/decoded over a collection
of blocks. A storage system distributes the stripes across
distinct nodes, such that it provides fault tolerance against a
subset of lost blocks of each stripe (see §2.1 for details).

The configuration of coding parameters in erasure coding
presents a trade-off across the storage capacity, access perfor-
mance, and fault tolerance subject to different deployment
requirements. It is shown that there exists an inherent trade-
off in erasure coding between storage overhead and repair
performance [13]. On the other hand, traditional erasure
coding deployment often uses a single erasure code with
fixed coding parameters for all data [5], [6], [11], [15], [35], [36].
Such a “one-size-fits-all” approach leads to inefficient adapta-
tion to the dynamics in workload and reliability requirements.
Thus, we argue that production storage systems should
support redundancy transitioning, which adaptively adjusts the
redundancy for erasure-coded stripes by renewing the coding
parameters and re-encoding the currently stored stripes
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with the new coding parameters. Redundancy transitioning
has recently received significant attention from the storage
community in response to workload dynamics [49], changes
in disk reliability [23]–[25], and the construction of wide-
stripe codes [18], [26] (see §2.2 for detailed motivation).

Despite the significance, redundancy transitioning incurs
substantial bandwidth overhead in a distributed environ-
ment, as it retrieves the currently stored stripes from different
nodes for re-encoding and distributes the re-encoded data
to a new set of nodes. Existing studies focus on reducing
the bandwidth [19], [32], [33], [51] during the redundancy
transitioning process. Unfortunately, even though the overall
transitioning bandwidth is mitigated, we observe that the
actual redundancy transitioning performance remains bottle-
necked by the most loaded node (§2.3). Thus, in addition to
mitigating the bandwidth, we should achieve load balancing
across the nodes during redundancy transitioning, so as
to reduce the redundancy transitioning time. However,
designing a load-balanced redundancy transitioning solution
is non-trivial, as redundancy transitioning is inherently a
complex system operation with multiple steps that require
careful scheduling (§2.2), and the scheduling complexity
increases tremendously with the number of stripes and nodes
in large-scale storage.

To this end, we propose BART, a load-balanced
redundancy transitioning scheme for large-scale erasure-
coded storage, with the objective of minimizing the overall
redundancy transitioning time through carefully scheduled
parallelization. In this work, we address the merge regime
of the code conversion problem [34], also known as stripe
merging [45], [51], to facilitate redundancy transitioning. In
the merge regime, we aggregate multiple small-size stripes
into a single large-size stripe, so as to reduce redundancy
overhead while preserving the same number of tolerable
block failures in the large-size stripe. We apply parity merging
[34] in aggregation by retrieving the existing parity blocks of
the small-size stripes to compute the new parity blocks for
the large-size stripe, as it incurs less bandwidth compared to
retrieving the data blocks of the small-size stripes for parity
computations (§2.2).
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Our contributions are summarized as follows:
• We formulate the redundancy transitioning problem based

on parity merging [34] and show that finding an optimal
load-balanced redundancy transitioning solution is non-
trivial due to the significantly large solution space.

• We design BART, which decomposes the redundancy tran-
sitioning problem into three sub-problems and solves the
sub-problems by efficient heuristics, so as to achieve load
balancing, while keeping the transitioning bandwidth low.
BART addresses both homogeneous (i.e., link capacities
are identical) and heterogeneous (i.e., link capacities are
different) environments.

• We evaluate BART in two aspects: simulations for large-
scale storage, and prototype experiments on Alibaba
Cloud [1]. Our simulations show that compared with the
bandwidth-driven approach that aims to minimize the
transitioning bandwidth, BART reduces the maximum
load by up to 45.3% in a large-scale storage setting, while
maintaining similar transitioning bandwidth. We also
prototype BART on Hadoop 3.3.4 HDFS [3]. Our prototype
experiments show that our BART prototype reduces the
transitioning time by up to 25.9% compared with the
bandwidth-driven approach.

We release the source code of BART (both the simulator
and prototype) at https://github.com/keyuncheng/BART.

2 BACKGROUND AND MOTIVATION

2.1 Basics of Erasure Coding

We consider a distributed storage system (e.g., GFS [16] and
HDFS [41]) that stores data as fixed-size blocks across multiple
nodes. To mitigate the I/O overhead, each block often has a
large size (e.g., 64 MiB [16] or 256 MiB [35]). All read/write
operations are performed in units of blocks. Erasure coding
is performed on a collection of blocks for fault tolerance.

In this work, we focus on RS codes [39] as the erasure
coding construction (§1). RS codes are constructed by two
configurable parameters k and m. A (k,m) RS code encodes
a set of k original uncoded blocks (called data blocks) into
m coded blocks (called parity blocks), and the set of k + m
data/parity blocks forms a stripe. RS codes have the following
practical properties: (i) parameter generality, i.e., RS codes
support general parameters k and m; (ii) storage optimality,
i.e., RS codes allow any k out of k + m blocks of a stripe
to reconstruct all original k data blocks (i.e., providing
fault tolerance against any m lost blocks) and maintain the
minimum storage redundancy (a.k.a. the maximum distance
separable (MDS) property); and (iii) systematic coding, i.e., RS
codes can keep the k data blocks within each stripe for direct
access.

Mathematically, RS codes encode parity blocks as follows.
Let D1, D2, · · · , Dk be the k data blocks and P1, P2, · · · , Pm

be the m parity blocks of a stripe of a (k,m) RS code. Each
parity block is computed from a linear combination of the k
data blocks of the same stripe using Galois field arithmetic.
In this work, we consider systematic Vandermonde-based
RS codes [37], in which each parity block Pi (1 ≤ i ≤ m) is
computed as:

Pi =
∑k

j=1
ij−1Dj , where 1 ≤ i ≤ m. (1)

Systematic Vandermonde-based RS codes support effi-
cient parity computation in redundancy transitioning (§2.2),
yet they generally cannot maintain the MDS property for all
parameters (k,m) under a finite Galois field size [19], [37]. In
this work, we assume that the field size is sufficiently large,
such that the MDS property of systematic Vandermonde-
based RS codes still holds for a wide range of parameters
(e.g., for any k and m ≤ 3 under the field size 256 [4]).

2.2 Redundancy Transitioning
Redundancy transitioning refers to the process of changing
the coding parameters (k,m) and hence adjusting the
redundancy of erasure-coded stripes. We provide several
motivating scenarios for which redundancy transitioning is
suitable.
• Workload changes. Skewness is observed in the access

patterns in production storage systems [10], [22], which con-
tain small fractions of hot data that is frequently accessed
and large fractions of cold data that is rarely accessed
but needs to be persistently stored. Storage systems can
adaptively switch between two erasure codes for different
access patterns [49], where hot data is encoded with a high-
redundancy code for high reconstruction performance,
while cold data is encoded with a low-redundancy code
for persistence with sub-par reconstruction performance.

• Reliability changes. Disk reliability in production changes
over the disk lifetime, where a disk shows a higher failure
rate in its early and wear-out stages and a lower failure
rate in its middle stages [25]. Prior studies propose disk-
adaptive redundancy [23]–[25] to re-encode the middle-
stage data with low-redundancy codes and re-encode again
the wear-out-stage data with high-redundancy codes, so
as to achieve low storage overhead in the whole storage
system while satisfying the minimum fault tolerance
requirement.

• Wide stripes. To reduce operational costs, recent studies
from both industry [9], [26] and academia [18] explore wide
stripes for the highest possible storage savings, in which
the stripe size k +m is extremely large, while m is kept
small. Wide stripes significantly increase the reconstruction
cost due to the ultra-low redundancy [13], so a storage
system can first encode newly written data that is likely
to be frequently accessed into narrow stripes, followed by
re-encoding the data into wide stripes as it ages [51].

There are two classes of redundancy transitioning, namely
scaling [19], [21], [46]–[48] and code conversion [31]–[34], [45],
[51]. Scaling re-encodes erasure-coded stripes with new
coding parameters and re-distributes the blocks across all
nodes, such that the blocks are evenly distributed across all
nodes; in some cases, it also enforces the uniform distribution
of data and parity blocks [19]. In contrast, code conversion
also re-encodes and re-distributes blocks, but does not require
that all blocks be evenly distributed. Compared with scaling,
code conversion is more appealing to practical deployment
for its simplicity (e.g., without the need for data rebalancing)
[34]. In this work, we focus on code conversion.

Furthermore, we focus on the merge regime of code con-
version [34], in which λ (k,m) input stripes are merged into
a single (λk,m) output stripe, where λ ≥ 2, while providing
the same fault tolerance against any m lost blocks. The

https://github.com/keyuncheng/BART
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Figure 1: Example of (2, 2, 3) parity merging.

merge regime addresses the scenario where storage-efficient
persistence is much more critical than access performance
(e.g., for cold data), by converting high-redundancy narrow
stripes into low-redundancy wide stripes [9], [18], [26], [51].

There are two code conversion approaches for the merge
regime, namely re-encoding and parity merging. To construct
new parity blocks for the output stripe, re-encoding retrieves
all λk data blocks from the λ input stripes to compute the
new m parity blocks for the output stripe, while parity
merging retrieves the λm parity blocks from the λ input
stripes to compute the new parity blocks for the output
stripe. If k ≥ m (which is commonly true in practice for
low redundancy overhead), then parity merging always has
lower bandwidth than re-encoding. Note that parity merging
works only if the new parity blocks can be expressed as a
function of the parity blocks of the stripes being merged,
while Vandermonde-based RS codes satisfy this property
(see below); other code constructions also exist and support
parity merging [34]. In this work, we focus on parity merging
under Vandermonde-based RS codes.

We elaborate on applying parity merging to the merge
regime of code conversion as follows. We consider a (k,m, λ)
parity merging problem, where λ (k,m) input stripes are
merged into a (λk,m) output stripe, where the stripes before
and after merging are still encoded under Vandermonde-
based RS codes. We augment the notation in §2.1 for multiple
stripes, and let D(l−1)k+j be the jth data block and P(l−1)m+i

be the ith parity block in the lth input stripe, where 1 ≤ j ≤ k,
1 ≤ i ≤ m, and 1 ≤ l ≤ λ. For the lth stripe, each parity
block is computed as:

P(l−1)m+i =
∑k

j=1
ij−1D(l−1)k+j , where 1 ≤ i ≤ m. (2)

Let Qi be the ith new parity block of the output stripe,
where 1 ≤ i ≤ m. Each parity block of the output stripe is
computed as:

Qi =
∑λk

j=1
ij−1Dj , where 1 ≤ i ≤ m. (3)

We can relate Equations (2) and (3) as follows:

Qi =
∑λ

l=1
i(l−1)k(

∑k

j=1
ij−1D(l−1)k+j)

=
∑λ

l=1
i(l−1)kP(l−1)m+i, where 1 ≤ i ≤ m. (4)

Thus, each new parity block Qi can be computed from the
ith parity blocks of the λ input stripes. Figure 1 shows an
example of (2, 2, 3) parity merging, where three (2,2) input
stripes are merged into one (6,2) output stripe.

Redundancy transitioning in large-scale storage systems
involves a large number of stripes. We define a stripe group
as the set of λ input stripes in a (k,m, λ) parity merging
operation, and there are multiple stripe groups under parity
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Figure 2: Motivating examples of (2, 2, 3) parity merging.

merging. We divide the parity merging operation into three
steps: (i) stripe group construction, which assigns currently
stored stripes into different stripe groups; (ii) parity block
generation, which merges parity blocks in each stripe group
to generate new parity blocks; and (iii) stripe re-distribution,
which re-distributes the blocks of all output stripes to ensure
that the λk data blocks and the m new parity blocks of each
output stripe are stored in distinct nodes for fault tolerance.
Note that the three steps are essential and interdependent,
working together to produce the output stripes while ensur-
ing fault tolerance in distributed storage (§3).

2.3 Motivation and Challenges

Redundancy transitioning triggers substantial bandwidth, so
practical storage systems often run redundancy transitioning
as background tasks with limited system resources [24]. Thus,
it is critical to reduce the duration of redundancy transition-
ing to mitigate the interference to foreground operations.
To motivate, we consider the bandwidth-driven redundancy
transitioning scheme (e.g., [32], [33], [45], [51]) that aims
to minimize the redundancy transitioning bandwidth. We
consider a homogeneous environment, in which all link
capacities are identical. We show via examples that although
the bandwidth-driven approach reduces the transitioning
bandwidth, it is not necessarily load-balanced. Here, we
consider (2,2,3) parity merging for six input stripes stored in
10 nodes (denoted by X1, X2, · · · , X10).

Example of bandwidth-driven redundancy transitioning.
Figure 2(a) shows bandwidth-driven redundancy transi-
tioning, which merges the stripes with limited transitioning
bandwidth (the design is based on bandwidth-driven stripe
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group construction, which is further explained in §4.1). For
stripe group construction, we assign the six input stripes into
two stripe groups, denoted by G1 and G2. For parity block
generation, we generate the new parity blocks Q1, Q2, Q3,
and Q4 via parity merging (denoted by Step (ii)). Note that a
node needs to retrieve the original parity blocks from other
nodes for parity block generation; for example, X6 retrieves
P3 and P5 from X8 and X5, respectively, and performs parity
merging on P1 (which is locally stored), P3, and P5 to form
Q1. For stripe re-distribution, some blocks are sent to other
nodes for fault tolerance (denoted by Step (iii)); for example,
X8 sends D11 to X9, so that all data and parity blocks of the
output stripe in G2 are stored in distinct nodes. Overall, the
transitioning bandwidth is seven blocks (i.e., the total number
of blocks being sent/received), while the most loaded nodes
are X1 and X6, both of which retrieve three blocks.

Example of load-balanced redundancy transitioning. Fig-
ure 2(b) shows load-balanced redundancy transitioning,
based on the same stripe groups as Figure 2(a). The process
of G1 remains unchanged. For G2, X2 retrieves P7 and
P11 from X1 and X3, respectively, and performs parity
merging on P7, P9 (locally stored), and P11 to form Q3. X2

also sends Q3 to X5 for stripe re-distribution. Overall, the
transitioning bandwidth is nine blocks (two more blocks than
the bandwidth-driven approach), yet the maximum load
reduces to two blocks (note that X6 can send and receive
two blocks simultaneously in full-duplex mode, so its load
remains two blocks).

3 PROBLEM FORMULATION AND ANALYSIS

We consider (k,m, λ) parity merging (§2.2) and pose the
load-balancing problem as follows. Suppose that there are
M input stripes that are randomly stored in N nodes, each
of which can simultaneously send and receive data in full-
duplex mode. We assume that M is divisible by λ, where
the input stripes can be evenly divided into M

λ stripe groups,
such that all data are re-encoded in new coding parameters
after redundancy transitioning. If M is not divisible by λ
(i.e., the last stripe group has fewer than λ input stripes), we
can add dummy zero-padded input stripes (i.e., all data and
parity blocks are zeros) to the last stripe group to allow λ
stripes for merging. Note that the dummy input stripes do
not need to be physically stored, and hence they do not incur
any storage overhead.

We focus on a distributed environment, where the redun-
dancy transitioning performance is bottlenecked by network
transmissions across nodes (as also justified in our Alibaba
Cloud evaluation (§5.2)). In our problem formulation and
system design, we assume a homogeneous setting where
the link capacities across nodes are identical (i.e., all nodes
can send or receive data at the same rate). We extend our
system design to address heterogeneous environments with
different link capacities in §4.4.

Our objective is to find a redundancy transitioning
solution that minimizes the maximum transitioning load (MTL),
defined as the maximum number of blocks that a node sends
or receives across all N nodes. For example, Figures 2(a) and
2(b) show two redundancy transitioning solutions, where
their MTLs are three and two, respectively. By minimizing

the MTL, we can minimize the redundancy transitioning
time.

Finding an optimal redundancy transitioning solution is
non-trivial. Recall that each solution needs to perform three
steps: stripe group construction, parity block generation, and
stripe re-distribution (§2.2). We show in the following that
each step has numerous possible choices that enlarge the
solution space.

First, we analyze the number of choices for stripe group
construction. Given M input stripes, we first select λ out
of the M stripes to form a group, followed by λ out of the
M−λ stripes to form the next group, and so on. In total, there
are

∏M/λ
i=1

(M−λ(i−1)
λ

)
= M !

(λ!)M/λ possibilities of assigning M

input stripes into M
λ stripe groups.

Second, for parity block generation, we assign a node
(called encoding node) out of the N nodes for each new parity
block of an output stripe. Since there are m parity blocks
for each of the M

λ output stripes, there are a total of NMm/λ

choices of encoding nodes.
Finally, for stripe re-distribution, some nodes need to

send the data/parity blocks to other nodes to maintain fault
tolerance (i.e., all blocks of the same output stripe are stored
in distinct nodes). Depending on the placement of the data
blocks and the choices of encoding nodes, the number of
blocks being re-distributed varies. In the ideal case, we do
not need to re-distribute any block, if the data and parity
blocks of each output stripe are already in distinct nodes
after parity block generation.

Thus, the lower bound of the solution space for load-
balanced (k,m, λ) parity merging is M !

(λ!)M/λ ×NMm/λ. The
number is huge, even for small N and M . For example,
for (2, 2, 3) parity merging with M = 30 input stripes and
N = 10 nodes, there are at least 4.39×1044 possible solutions.
It is infeasible to perform a simple brute-force search to find
an optimal solution.

Note that the stripe group construction step can be
further reduced to a k-means cluster problem [30], which
is known to be NP-hard. Intuitively, we can treat each of
M input stripes as a data point in some N -dimensional
space corresponding to N nodes, and consider a stripe group
as a cluster comprising λ data points. For load-balanced
redundancy transitioning, our goal is to find M

λ disjoint
clusters to minimize the sum of a cost function, where the cost
function can be defined based on the MTL. The subsequent
parity block generation and stripe re-distribution steps can
also affect the MTL of the resulting redundancy transition-
ing solution, thereby making the redundancy transitioning
problem intractable.

4 BART DESIGN

We present BART, a load-balanced redundancy transition-
ing scheme for erasure-coded storage. BART addresses
(k,m, λ) parity merging to mitigate not only the MTL, but
also the transitioning bandwidth as in prior bandwidth-
driven approaches [32], [33], [45], [51], so as to reduce the
redundancy transitioning time. Its core idea is to decom-
pose the parity merging problem into the sub-problems
of stripe group construction, parity block generation, and
stripe re-distribution (which correspond to the three steps
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of a parity merging operation (§2.2)), and solve the sub-
problems with efficient heuristics. Specifically, BART first
performs bandwidth-driven stripe group construction to
mitigate the transitioning bandwidth and hence simplify
load balancing in subsequent operations (§4.1). It then
formulates bipartite-graph semi-matching problems for load
balancing in both parity block generation (§4.2) and stripe
re-distribution (§4.3). Our discussion mainly focuses on
homogeneous environments, and we further extend BART
to address heterogeneous environments (§4.4).

4.1 Stripe Group Construction

Overview. BART starts with bandwidth-driven stripe group
construction to mitigate the transitioning bandwidth, and
later load-balances the bandwidth across nodes in parity
block generation (§4.2) and stripe re-distribution (§4.3). It
adapts the idea of StripeMerge [51] to partition the input
stripes into multiple stripe groups, such that each stripe
group only transmits a limited number of blocks for parity
merging. Note that StripeMerge only considers λ = 2, and
BART extends its design for λ ≥ 2.

Partial stripe groups. BART’s core idea is to first form M
λ

partial stripe groups (PSGs) with two input stripes each, and
then iteratively add an input stripe to each PSG until the
PSG has λ input stripes. We define a γ-PSG as a PSG with γ
input stripes (where 2 ≤ γ ≤ λ), which can form a (γk,m)
output stripe. We define the transitioning cost as the number
of blocks being transferred in parity block generation and
stripe re-distribution. In each iteration, BART aims to find
the γ-PSGs whose transitioning costs are as small as possible.

We compute the transitioning cost for a γ-PSG as follows.
For each new parity block to be generated, we choose the
node that stores the most original parity blocks as the
encoding node. After all new parity blocks are generated, we
assume that the blocks are randomly re-distributed to other
nodes for fault tolerance. We then obtain the transitioning
cost. Here, we do not perform load balancing, and we defer
the load-balancing steps to §4.2 and §4.3.

Note that the transitioning cost is an integer ranging from
0 to (γ − 1)(k +m). In the ideal case, all parity blocks are
aligned (i.e., the ith parity blocks of all input stripes reside
in the same node, which becomes an encoding node and
generates the new ith parity block of the output stripe) and
all kγ data blocks are stored in distinct nodes, while in the
worst case, all mγ parity blocks are in distinct nodes and
all kγ data blocks are stored in the same set of k nodes. For
example, in Figure 2(a), the transitioning costs of G1 and G2

are three and four, respectively.

Heuristic. Algorithm 1 shows our heuristic that proceeds as
follows.
• Step 1 (Initialization): Initially, we store all M input stripes

into an input set S and set γ = 2. We consider all
(M
2

)
=

M(M−1)
2 choices of 2-PSGs. We sort all candidate 2-PSGs

in ascending order of transitioning costs. We select the first
M
λ non-overlapping 2-PSGs in the sorted list into an output

set R, such that the input stripes of each selected 2-PSG
will not be included in the subsequently selected 2-PSGs.
We also remove the 2M

λ input stripes of the selected 2-PSGs
from S (lines 1-6).

Algorithm 1 Stripe Group Construction
Input: M input stripes stored in S
Output: Constructed stripe groups stored in R

1: // Step 1
2: Initialize γ = 2
3: Enumerate

(
M
2

)
2-PSGs

4: Sort the enumerated 2-PSGs in ascending order of transi-
tioning costs

5: Initialize R as the first M
λ

non-overlapping 2-PSGs in the
sorted list

6: Remove the 2M
λ

input stripes of the selected 2-PSGs from S
7: for γ = 3 to λ do
8: // Step 2
9: Enumerate M2(λ−γ+1)

λ2 γ-PSGs by adding each input
stripe in S to each (γ − 1)-PSGs in R

10: // Step 3
11: Sort the enumerated γ-PSGs in ascending order of

transitioning costs
12: Reset R = ∅
13: Set R as the first M

λ
non-overlapping γ-PSGs in the

sorted list
14: Remove the M

λ
input stripes of the selected γ-PSGs from

S
15: end for

Cost Candidate 2-PSGs
1 (S2, S3)
2 (S1, S2), (S1, S3), (S2, S4),

(S2, S5), (S2, S6), (S3, S4),
(S3, S5), (S4, S5), (S4, S6)

3 (S1, S4), (S1, S5), (S1, S6),
(S3, S6), (S5, S6)

Cost Candidate 3-PSGs
3 (S1, S2, S3), 
4 (S2, S3, S6), (S4, S5, S6)
6 (S1, S4, S5)

Selected 2-PSGs Cost sum
(S2, S3), (S4, S5) 3

Input Stripes
S1, S2, S3, S4, S5, S6

Input Stripes
S1, S6

Selected 3-PSGs Cost sum
(S1, S2, S3),
(S4, S5, S6)

7

Step 1

Step
 2

Step 3

Figure 3: Stripe group construction with our heuristic.

• Step 2 (Enumeration): For γ > 2, we add each input stripe
in S (where |S| = M − M(γ−1)

λ ) into the (γ − 1)-PSGs
in R (where |R| = M

λ ) and form an enumerated set of
M2(λ−γ+1)

λ2 of γ-PSGs (lines 8-9).
• Step 3 (Selection): We sort the enumerated set of γ-PSGs in

ascending order of transitioning costs. We reset R = ∅ and
select the first M

λ non-overlapping γ-PSGs in the sorted list
into R, such that the input stripes of each selected γ-PSG
will not be included in the subsequently selected γ-PSGs.
We also remove the M

λ input stripes from S (lines 10-14).
We repeat Steps 2 and 3 for 2 < γ ≤ λ (i.e., λ − 2

iterations). The final set of stripe groups (i.e., λ-PSGs) is
stored in R.
Example. Figure 3 depicts the design of stripe group construc-
tion in BART, based on the (2, 2, 3) parity merging example
in Figure 2. Let S1, S2, · · · , S6 be the M = 6 input stripes.
We first examine

(6
2

)
= 15 possible 2-PSGs. We then select

M
λ = 2 2-PSGs: (S2, S3) and (S4, S5), whose transitioning

costs are one and two, respectively. We then enumerate four 3-
PSGs by adding S1 and S6 into (S2, S3) and (S4, S5). Finally,
we choose (S1, S2, S3) and (S4, S5, S6) as the stripe groups,
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whose total transitioning cost is seven.

Complexity analysis. We study the time complexity of our
heuristic. Since we know the range of transitioning costs, we
can perform counting sort on the set of γ-PSGs, so the sorting
complexity is linear with the number of elements in the set
(assuming that the range of transitioning costs is small). For
Step 1, the complexity is O(M2) (i.e., O(M2) for counting
sort plus O(M2) for selecting M

λ 2-PSGs from the sorted list).
For Step 2, the complexity is O(M

2(λ−γ+1)
λ2 ) for enumerating

γ-PSGs. For Step 3, the complexity is O(M
2(λ−γ+1)

λ2 ) (for
counting sort plus selecting M

λ γ-PSGs). Since Steps 2 and 3
are repeated λ− 2 times, the total complexity of Steps 2 and
3 is O(M2). Thus, the overall complexity of the heuristic is
O(M2).

Given the complexity of O(M2), when M is significantly
large (e.g., with millions of stripes), performing bandwidth-
driven stripe group construction directly over M stripes can
significantly increase the time of stripe group construction
for solution generation. Nevertheless, the solution gener-
ation process can be done offline based on the current
data placement before redundancy transitioning is executed,
so it does not affect the actual redundancy transitioning
performance. Also, we can partition the input stripes into
multiple batches and process the stripes on a per-batch
basis. For example, considering (6, 3, 3) parity merging with
a batch of M = 12000 input stripes and a block size of
64 MiB [16] (equivalent to a total of 6.59 TiB of data and
parity blocks), BART can generate the solution within 50.4 s
in our simulations (§5.1).

4.2 Parity Block Generation

Overview. BART models the selection of encoding nodes for
parity block generation as a bipartite-graph semi-matching
problem that addresses the traffic sent and received by all
nodes for load balancing. We start with a weighted bipartite
graph that comprises a set of Mm

λ block vertices that represent
the new parity blocks of the M

λ output stripes and a set of
N node vertices that represent the N available nodes. Every
block vertex is connected to every node vertex with an edge,
whose weight represents the number of original parity blocks
to retrieve if the node (associated with the node vertex)
becomes the encoding node that generates the new parity
block (associated with the block vertex).

The selection of encoding nodes is modeled as a semi-
matching of the bipartite graph [17]. A semi-matching com-
prises a set of edges that match every block vertex to a node
vertex, meaning that the corresponding node is the encoding
node for the corresponding new parity block. Note that a
node vertex can be matched with multiple block vertices (i.e.,
multiple new parity blocks can be generated independently
at the same node). BART aims to find a semi-matching whose
corresponding traffic is balanced across the nodes.

To help the selection of encoding nodes, we use a traffic
table to record how many blocks each node sends or receives.
There are three components that contribute to network traffic:
(i) the number of original parity blocks for parity block
generation (denoted by np), (ii) the number of data blocks for
stripe re-distribution (denoted by nd), and (iii) the number
of new parity blocks for stripe re-distribution (denoted by

Algorithm 2 Parity Block Generation
Input: A weighted bipartite graph for parity block generation
Output: A semi-matching that represents the selection of encod-

ing nodes
1: // Step 1
2: Initialize si and ri (where 1 ≤ i ≤ N ) in the traffic table
3: // Step 2
4: Initialize an empty set of edges in the the semi-matching
5: for each new parity block Q do
6: Select the least-loaded node Xi (where 1 ≤ i ≤ N ) as the

encoding node of Q based on the current traffic table
7: Add the corresponding edge to semi-matching and

update the traffic table accordingly
8: end for
9: // Step 3

10: while true do
11: for each new parity block Q whose current encoding

node is Xi do
12: Substitute Xj for Xi (where j ̸= i) as the encoding

node of Q if it improves the semi-matching
13: Update the semi-matching and traffic table based on

the substitution of encoding node
14: end for
15: Break if the semi-matching cannot be improved
16: end while

nq). For each node Xi (1 ≤ i ≤ N ), we record si as the
sum of np, nd, and nq being sent by Xi, and record ri as np

being received by Xi. Here, we do not consider nd and nq

being received by Xi (i.e., the received traffic for parity block
generation and stripe re-distribution), as they are determined
by block placement after all encoding nodes are selected. We
address them in our load-balancing heuristic in §4.3.

Heuristic. BART adopts a greedy heuristic for the selection
of encoding nodes. It updates the traffic table on-the-fly and
iterative adjusts the semi-matching based on the traffic table.
Algorithm 2 shows our heuristic that proceeds as follows.

• Step 1 (Initialization of the traffic table): For 1 ≤ i ≤ N , we
initialize ri = 0 and si as the sum of (i) the number of
original parity blocks stored in Xi and (ii) the number of
data blocks to re-distribute from Xi for all output stripes.
The rationale for si is as follows: for (i), Xi needs to send
its currently stored original parity blocks to other nodes
for parity merging if it is not selected as an encoding node;
for (ii), Xi sends all but one data block to other nodes for
every output stripe to maintain the fault tolerance of the
stripe (lines 1-2).

• Step 2 (Initialization of the semi-matching): We start with an
empty set of edges in the semi-matching (line 4). For each
block vertex, we select a node vertex among all N node
vertices as follows. Suppose that we select node Xi as the
encoding node for a new parity block (denoted by Q), and
let w be the edge weight between the block vertex for Q
and the node vertex for Xi in the bipartite graph. Based
on the current traffic table, we update the traffic table as
follows. First, we add ri by w, meaning that Xi retrieves
w original parity blocks to Xi from other nodes. Second,
we subtract si by λ−w, meaning that Xi does not need to
send its locally stored λ−w original parity blocks to other
nodes. Third, we add si by one if Xi needs to re-distribute
Q to another node. We record the largest entry of the traffic
table if Xi is chosen as the encoding node. We repeat the
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Figure 4: Modeling of parity block generation. The dark edges
are the semi-matching, which specifies the encoding nodes for
generating the corresponding new parity blocks.

above update process on the current traffic table for every
node Xi for 1 ≤ i ≤ N , and select the node whose largest
entry is the least among all nodes as the encoding node
(i.e., the encoding node is currently the least-loaded node)
(line 6). If there is a tie, we select the node that transfers
the fewest blocks to generate and re-distribute Q. Given
the selected encoding node, we add the edge that connects
the node vertex and the block vertex to the semi-matching,
and update the traffic table accordingly (line 7). We repeat
the process for all block vertices and the semi-matching is
initialized.

• Step 3 (Optimization of the semi-matching): We optimize the
semi-matching in multiple iterations. In each iteration,
we examine if each block vertex can be matched with
another node vertex to “improve” the semi-matching; by
“improve”, we mean that if we can reduce the value of
the largest entry in the traffic table or reduce the number
of blocks transferred with the same value of the largest
entry. We elaborate on how to check a block vertex as
follows. Suppose that Xi is the currently selected encoding
node for a new parity block Q. We examine if replacing Xi

by another node Xj (i ̸= j) improves the semi-matching.
First, we reset the traffic table by unselecting Xi, where we
subtract ri by w, add si by λ− w, and subtract si by one
if Q needs to be re-distributed. Next, we update the traffic
table by selecting Xj . If substituting Xi with Xj improves
the semi-matching, we update the semi-matching with
the newly selected node vertex for Xj , and update the
traffic table accordingly (lines 12-13). If we cannot improve
the semi-matching in an iteration (i.e., we cannot change
the current selection for all encoding nodes), the step is
finished (line 15).

Example. Figure 4 depicts the selection of encoding nodes,
based on the (2, 2, 3) parity merging example in Figure 2.
In Step 1, we initialize the traffic table. For example, we set
s8 = 2, as X8 sends P3 and D11 to other nodes. The largest
entry of the initialized traffic table is three (i.e., s1 and s6). In
Step 2, we initialize the semi-matching. For Q1, we select X6,
which keeps the largest entry as three (i.e., s1) and transfers
two blocks. We add the edge connecting Q1 and X6 to the
semi-matching, and update the traffic table by adding r6 by
two and subtracting s6 by one. For Q2, we select X1, which
reduces the largest entry to two and transfers one block. We
proceed for Q3 and Q4 and finish the initialization of semi-
matching, where the largest entry is two and a total of nine
blocks (i.e.,

∑10
i=1 si) are sent. In Step 3, we examine from Q1

to Q4 and find that the semi-matching cannot be improved

by changing the current selection of encoding nodes. We
finally set X6, X1, X2, and X4 as the encoding nodes for Q1,
Q2, Q3, and Q4, respectively.
Remarks. BART may slightly increase the transitioning
bandwidth over the bandwidth-driven approach (i.e., the
total transitioning cost in §4.1). As BART aims for load
balancing, some selected encoding nodes may no longer
store the most original parity blocks, which incur extra tran-
sitioning bandwidth for retrieving the original parity blocks.
Nevertheless, our evaluation shows that the transitioning
bandwidth overhead of BART remains limited (§5).
Complexity analysis. We analyze the time complexity of our
heuristic. For Step 1, the complexity is O(M(k + m)) for
checking the stripe placements. For Step 2, the complexity is
O(MNm), in which for each of Mm

λ block vertices, we check
N node vertices by updating the traffic table in O(λ) time
each. For Step 3, the complexity is O(αMNm) (for resetting
plus updating the traffic table), where α is the number of
iterations. From our evaluation, α is typically small (within
10) and has limited performance overhead (§5). Thus, the
overall time complexity is O(αMNm).

4.3 Stripe Re-distribution
Overview. BART formulates another bipartite-graph semi-
matching problem for load-balanced stripe re-distribution.
We first create an unweighted bipartite graph based on the
stripe placement. The bipartite graph consists of a set of
block vertices representing the data and new parity blocks
that need to be re-distributed after parity block generation,
and a set of N node vertices that represent the N available
nodes for stripe re-distribution. We connect a block vertex
with a node vertex by an edge if the corresponding block can
be re-distributed to the corresponding node, provided that
the fault tolerance is maintained.

BART finds a semi-matching of the (unweighted) bipartite
graph, such that each edge in the semi-matching means that
the corresponding block is re-distributed to the correspond-
ing node. It leverages the Hungarian algorithm [17], which
provably finds a semi-matching that minimizes the maximum
degree of a node vertex. It adapts the Hungarian algorithm
to address the received traffic for parity block generation
and stripe re-distribution (§4.2). BART aims to balance the
received traffic for each node after all encoding nodes are
selected.

Specifically, BART builds on finding alternating paths [17].
An alternating path, denoted by (u1, v1, u2, v2, · · · , un, vn),
is a sequence of distinct vertices in the bipartite graph, where
ui and vi (1 ≤ i ≤ n) are a block vertex and a node vertex,
respectively, and n (n ≤ N ) is the length of the path. It
contains an alternate sequence of unmatched edges that are
not in the semi-matching and matched edges that are in the
semi-matching. To form an alternating path, we start with
a block vertex u1 that is not connected by any matched
edge. We find a node vertex v1 that is connected to u1 by
an unmatched edge, and add v1 to the path. We then find a
block vertex u2 that is connected by a matched edge, and add
u2 to the path. We repeat the above process until we reach vn
that is not connected to any block vertex by a matched edge.
Here, we assume that an alternating path always ends at a
node vertex; in other words, for each block vertex ui, we can
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Algorithm 3 Stripe Re-distribution
Input: An unweighted bipartite graph for stripe re-distribution
Output: A semi-matching that represents the solution of stripe

re-distribution
1: Initialize an empty set of edges in the semi-matching
2: for each block vertex u do
3: Form all alternating paths starting from u
4: Select the first path whose last node vertex has the

smallest ri (where 1 ≤ i ≤ N )
5: Perform switching on the selected alternating path
6: Update the semi-matching and traffic table based on

switching
7: end for

G2

X2 X3 X4 X6 X7 X8 X10

D11

Stripe Re-distribution

1 1 2 0 1 2 0 2 0 0

1 2 0 2 0+1 2 0 0 0+1 0

np

Traffic

nd

nq

Traffic table

Q3

X1 X5 X9

switching

si

ri

Figure 5: Modeling of stripe re-distribution. To re-distribute Q3,
we select the alternating path (Q3, X5, D11, X9), where r9 = 0
is the smallest. We perform switching on the path and increase
r9 by one.

always find a node vertex vi that is connected to ui by an
unmatched edge. This is true for large-scale storage systems,
in which there are sufficient available nodes to which a block
can be re-distributed.

A key operation is called switching, which converts all
unmatched edges to matched edges, and converts all matched
edges to unmatched edges, along the alternating path. Switch-
ing finds an available node to store the block for the block
vertex u1, while increasing the number of received blocks ri
for the last node vertex vn by one (for other node vertices in
the alternating path, the numbers of received blocks of the
nodes remain unchanged).

Heuristic. Algorithm 3 shows our heuristic that proceeds
as follows. We start with an empty semi-matching without
any matched edge (line 1). For each block vertex u in the
bipartite graph, we form all alternating paths starting from u
(via breadth-first search), from which we select the first path
whose last node vertex (corresponding to node Xi) has the
smallest ri (i.e., Xi is currently the least-loaded node) among
all alternating paths (lines 3-4). We perform switching on the
selected alternating path, so as to find the available node to
store the block associated with the block vertex u. We update
the semi-matching with the new set of matched edges from
the alternating path after switching, and add ri by one (lines
5-6). We repeat the above process for all block vertices and
construct the semi-matching for stripe re-distribution.

Example. Figure 5 depicts our stripe re-distribution heuristic
for the example in Figure 2(b). Suppose that D11 and Q3

from the stripe group G2 need to be re-distributed, where
nodes X1, X5, X6, and X9 are the available nodes for re-
distribution. We form the bipartite graph and start with an
empty semi-matching.

First, we find a node to which D11 is re-distributed. We
form all alternating paths starting from D11 (i.e., (D11, X1),

(D11, X5), (D11, X6), and (D11, X9)). We check the current
value of ri corresponding to the last node vertex of each
alternating path (i.e., r1 = 1, r5 = 0, r6 = 2, and r9 = 0,
respectively). Among the paths, we select (D11, X5), the
first path whose last node vertex has the smallest ri (i.e.,
r5 = 0). We perform switching on (D11, X5), after which we
update the semi-matching with the only matched edge (i.e.,
(D11, X5)) and increase r5 by one.

Second, we find a node to which Q3 is re-distributed. We
form all alternating paths starting from Q3 (i.e., (Q3, X1),
(Q3, X5, D11, X9), (Q3, X6), and (Q3, X9)), and check the
current value of ri corresponding to the last node vertex
of each alternating path (i.e., r1 = 1, r9 = 0, r6 = 2, and
r9 = 0, respectively). We select (Q3, X5, D11, X9), the first
path whose last node vertex has the smallest ri (i.e., r9 = 0).
We perform switching on (Q3, X5, D11, X9), after which we
update the semi-matching with the new matched edges (i.e.,
(Q3, X5) and (D11, X9)), and increase r9 by one. Finally, we
re-distribute D11 and Q3 to X9 and X5, respectively.
Complexity analysis. We analyze the time complexity of our
heuristic. The number of blocks that need to be re-distributed
(i.e., the number of block vertices in the bipartite graph) in
the worst case is M((λ−1)k+m)

λ , in which each of M
λ output

stripes re-distributes (λ− 1)k data blocks when all λk data
blocks are stored in the same k nodes and re-distributes
all m new parity blocks that are generated on the same k
nodes. The total number of edges in the bipartite graph is
M((λ−1)k+m)(N−k)

λ , where each block can be re-distributed
to N − k available nodes.

For each block vertex, we form alternating paths via
breadth-first search, such that each edge in the bipartite
graph is visited at most once. The complexity for processing
a single block vertex is O(M((λ−1)k+m)(N−k)

λ ). Thus, the
complexity of our heuristic for processing all block vertices
is O(M

2((λ−1)k+m)2(N−k)
λ2 ).

Despite the high (worst-case) complexity, our evaluation
shows that the number of blocks to be re-distributed is
generally small (§5), as the prior steps of BART (§4.1 and
§4.2) already reduce the transitioning bandwidth and hence
the number of blocks to be re-distributed. Also, most alter-
nating paths have short lengths, so the time to examine all
alternating paths is limited. Overall, the actual performance
overhead for stripe re-distribution remains limited (§5).

4.4 BART in Heterogeneous Environments
We further extend BART to address heterogeneous environ-
ments, in which case the redundancy transitioning perfor-
mance is determined by not only the amount of data sent
or received in each node, but also the link capacity of each
node. Thus, minimizing the MTL in heterogeneous environ-
ments may not necessarily minimize the actual redundancy
transitioning time.

We extend the heuristics by introducing a transitioning
time table (in addition to the traffic table) into parity block
generation (§4.2) and stripe re-distribution (§4.3). Given
the available link capacities of all nodes, each entry of the
transitioning time table records the upload and download
times for the corresponding node to send and receive the
blocks, respectively. BART initializes and updates the entries
of the transitioning time table on-the-fly together with the
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entries of the traffic table. Specifically, let B be the block
size, bi and b′i be the available upload and download link
capacities of node Xi, respectively. The upload time (denoted
by ti) and the download time (denoted by t′i) of Xi in the
transitioning time table are computed as:

ti =
B×si
bi

, t′i =
B×ri
b′i

, where 1 ≤ i ≤ M. (5)

where si and ri are the numbers of blocks sent and received
by Xi recorded in the traffic table, respectively. BART aims to
find a redundancy transitioning solution that minimizes the
maximum data transfer time (MTT), defined as the maximum
time to send or receive the data across all nodes. Note that in
homogeneous environments (where bi = b′i for all Xi), BART
reduces both MTL and MTT simultaneously.

The extended heuristics work as follows. The heuristic for
stripe group construction remains unchanged, as its primary
objective is to mitigate the overall transitioning bandwidth
instead of load balancing. We first focus on parity block
generation. In Step 2, for each block vertex, suppose that
BART chooses node Xi as the encoding node. After BART
updates the traffic table, it also updates the transitioning time
table based on Equation (5). It repeats the update process
for both the traffic table and transitioning time table for
all N nodes, and selects the node whose largest entry of
the transitioning time table is the smallest among all nodes.
Similarly, in Step 3, BART improves the semi-matching by
reducing the value of the largest entry of the transitioning
time table. We next focus on stripe re-distribution. For each
block vertex, BART forms all alternating paths and selects
the first alternating path whose last vertex has the smallest
t′i among all paths. It then performs switching and updates
ri and t′i accordingly.

4.5 Discussion
We discuss the performance trade-off between the time
complexity of our heuristics and the reduction in both MTL
and transitioning bandwidth. For comparison, we consider
a randomized approach that performs stripe group con-
struction, parity block generation, and stripe re-distribution
randomly. Specifically, we first randomly assign the M stripes
to M

λ stripe groups, with a time complexity of O(M). For
each stripe group, we randomly assign m nodes to generate
the new parity blocks, with a time complexity of O(Mm

λ ).
Finally, we randomly re-distribute the data and new parity
blocks for fault tolerance (i.e., if multiple blocks of a stripe are
stored in the same node, they will be randomly re-distributed
to other distinct nodes, such that all blocks of a stripe are
stored in distinct nodes), with a worst-case time complexity of
O( (M(λ−1)k+m)

λ ), where we re-distribute (λ−1)k data blocks
and m new parity blocks; note that random re-distribution
cannot balance the received traffic of all nodes. Overall, BART
has a larger time complexity than the randomized approach.
Nevertheless, our evaluation shows that the randomized
approach incurs a high MTL and transitioning bandwidth,
while BART effectively reduces both MTL and transitioning
bandwidth within a reasonable time (§5.1).

5 EVALUATION

We evaluate BART via large-scale simulations (§5.1) and
HDFS [3] experiments on Alibaba Cloud [1] (§5.2). We
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Figure 6: Experiment A1: Impact of (k,m, λ) (where (k,m, λ) is
arranged in increasing lexicographic order).

address the following questions: (i) What are the MTL
(in homogeneous environments), MTT (in heterogeneous
environments), and transitioning bandwidth of BART in
large-scale settings? (ii) What is the actual performance of
BART in terms of the time of redundancy transitioning in a
real network environment?

5.1 Large-Scale Simulations

We implement a simulator in C++ with about 3.5 K LoC to
evaluate BART in a large-scale storage cluster. We also imple-
ment two baselines for comparisons: (i) RD, the randomized
approach which randomly performs stripe group construc-
tion, parity block generation, and stripe re-distribution (§4.5);
and (ii) BW, the bandwidth-driven approach which performs
bandwidth-driven stripe group construction, as well as the
assumed steps for parity block generation and stripe re-
distribution based on how we compute the transitioning
cost without load balancing (§4.1). We conduct simulations
on a Ubuntu 20.04 server equipped with an Intel i5-7500
3.4 GHz CPU, 16 GiB RAM, and a 7200 RPM 1 TiB SATA
hard disk. We consider different (k,m, λ), M , and N , where
some parameters have been studied in literature [34], [53].
Initially, the set of M stripes is randomly distributed across
N nodes in a storage cluster. For homogeneous environments
(Experiments A1-A4), we measure the MTL and transitioning
bandwidth in units of blocks, so the link capacities (which
are identical for all links) are not specified; for heterogeneous
environments (Experiment A5), we measure the MTT by
considering different settings of link capacities. We report
the average results over 30 runs, with error bars showing the
95% confidence intervals based on the normal distribution.

Experiment A1: Impact of (k,m, λ). We first study the MTL
and transitioning bandwidth of different schemes by varying
(k,m, λ). We fix M = 12000 stripes (so that M is divisible
by λ = 2, 3, 4) and N = 100 nodes. Figure 6 shows the
results; note that some of the (k,m) settings are also used in
production (e.g., (6, 3) in Google Colossus [49] and (10, 4) in
Facebook’s f4 [35]). Both BART and BW significantly reduce
both MTL and transitioning bandwidth of RD, while BART
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Figure 7: Experiment A2: Impact of M (where N = 100 and
(k,m, λ) = (6, 3, 3)).
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Figure 8: Experiment A3: Impact of N (where M = 12000 and
(k,m, λ) = (6, 3, 3)).

further reduces the MTL of BW with only a slight increase in
transitioning bandwidth via the load balancing steps (§4.2).
For example, for (6, 3, 3), BART reduces the MTL of RD and
BW by 75.4% and 26.9%, respectively, while BART reduces
the transitioning bandwidth of RD by 75.0% and slightly
increases the transitioning bandwidth of BW by 0.56%.
Experiment A2: Impact of M . We study the impact of M
on the MTL and transitioning bandwidth by varying M
from 6000 to 24000 stripes. Here, we fix N = 100 nodes
and (k,m, λ) = (6, 3, 3). Figure 7 shows the results. While
both MTL and transitioning bandwidth increase linearly with
the number of input stripes, BART still effectively reduces
the MTL over the baselines, while keeping the transitioning
bandwidth low. For example, for M = 24000, BART reduces
the MTLs of RD and BW by 77.2% and 24.7%, respectively,
while BART reduces the transitioning bandwidth of RD by
77.3% and slightly increases the transitioning bandwidth of
BW by 0.49%.
Experiment A3: Impact of N . We also study the impact of
N on the MTL and transitioning bandwidth by varying N
from 100 to 400 nodes. Here, we fix M = 12000 stripes
and (k,m, λ) = (6, 3, 3). Figure 8 shows the results. When
N increases, the MTLs of all schemes decrease as the tran-
sitioning bandwidth is naturally spread across the nodes,
while the transitioning bandwidth varies slightly across the
number of nodes. Overall, BART can still effectively reduce
the MTL. For example, when N = 400, BART reduces the
MTLs of RD and BW by 65.6% and 45.3%, respectively, while
BART reduces the transitioning bandwidth of RD by 60.4%
and slightly increases the transitioning bandwidth of BW by
0.13%.
Experiment A4: Solution generation time. We measure
the running times to generate a redundancy transitioning
solution for BART and BW; we do not consider RD as it
shows significantly poor transitioning performance. Here,
we fix (k,m, λ) = (6, 3, 3). We study the impact of M
and N on the solution generation times by (i) varying
M from 6000 to 24000 stripes with N = 100 nodes and
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Figure 9: Experiment A4: Solution generation time (where
(k,m, λ) = (6, 3, 3)).
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Figure 10: Experiment A5: Impact of network heterogeneity
(where B = 64MiB, M = 12000, N = 100, and (k,m, λ) =
(6, 3, 3)).

(ii) varying N from 100 to 400 nodes with M = 12000
stripes. Figure 9 shows the results. The solution generation
times of both BART and BW increase significantly with M ,
while remaining similar even if N varies. The reason is
that the solution generation times of both BART and BW
are dominated by stripe group construction with a time
complexity of O(M2), which is independent of N (§4.1).
BART only shows slightly higher solution generation time
than BW for performing the subsequent load-balancing steps.
For example, for M = 12000 and N = 100, BART generates
a redundancy transitioning solution within 50.4 s, where
stripe group construction accounts for 98.9% of the overall
solution generation time. BART can generate the redundancy
transitioning solution offline, so the actual transitioning
performance is not affected by the solution generation time
overhead.
Experiment A5: Impact of network heterogeneity. We then
study the impact of network heterogeneity, where we vary
the available link capacity across the nodes. Here, we refer to
the extension of BART for heterogeneous environments (§4.4)
as BART-H for comparisons. We choose the available link
capacities for nodes based on the uniform distribution [40],
[55], where we set the largest link capacity as 1 Gbps, and
vary the smallest link capacity from 0.01 Gbps to 0.5 Gbps. We
set the default block size B = 64MiB [16]. We fix M = 12000
stripes, N = 100 nodes, and (k,m, λ) = (6, 3, 3). Figure 10
shows the results. BART-H effectively reduces the MTT of
all baselines, especially when the smallest link bandwidth
is lower, while keeping the transitioning bandwidth low.
For example, for U [0.01Gbps, 1Gbps], BART-H reduces the
MTTs of RD, BW, and BART by 91.6%, 67.2% and 65.5%,
respectively, while BART-H slightly increases the bandwidth
of BW by 2.3%.

5.2 Testbed Experiments
Prototype implementation. To demonstrate the practicality
of BART, we implement a BART prototype as a middleware
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Figure 11: Experiment B1: Impact of (k,m, λ).

atop Hadoop 3.3.4 HDFS [3]. HDFS comprises a NameNode
for storage management and multiple DataNodes for data
storage. It stores data as fixed-sized blocks and supports
systematic Vandermonde-based RS codes.

We implement BART with two components: a Controller,
which resides in the NameNode, and multiple Agents, each
of which resides in a DataNode. Suppose that HDFS stores
erasure-coded stripes across the DataNodes before redun-
dancy transitioning. Then, the Controller generates a redun-
dancy transitioning solution based on the stripe metadata
stored in the NameNode, and notifies the Agents about
the actual operations. The Agents execute the transitioning
operations to generate the output stripes. We implement
the data transfer, I/O, and erasure coding functionalities in
C++ with around 2.2 K LoC, in which we use ISA-L [7] to
implement the erasure coding operations. We also support
the data retrieval from HDFS with new coding parameters
after redundancy transitioning, by adding around 1.4 K LoC
written in Java to the HDFS codebase.
Evaluation methodology. We deploy the BART prototype
on Alibaba Cloud [1]. We provision 31 ecs.g7.xlarge
instances, including one instance serving the NameNode
and 30 instances serving the DataNodes. Each instance has
4 vCPUs, 16 GiB RAM, and a 100 GiB enhanced SSD with
PL1 performance [2]. It is installed with Ubuntu 20.04. All
instances are connected via a 10 Gbps network, and we
configure the network bandwidth in our evaluation via the
Wondershaper tool [8]. By default, we set M = 1200 stripes,
block size as 64 MiB [16], and network bandwidth as 1 Gbps.
We evaluate the impact of (k,m, λ), block size and network
bandwidth.

We measure the transitioning time, defined as the time
from issuing a request for executing redundancy transi-
tioning until all output stripes are generated. We report
the average transitioning time over 10 runs, with error
bars showing the 95% confidence intervals based on the
student’s t-distribution. We only plot the results of BART
and BW, as RD shows significantly poor performance from
our simulation results (§5.1).
Experiment B1: Impact of (k,m, λ). We first study the
transitioning time of BART for different (k,m, λ). Figure 11(a)
shows the results. By reducing the MTL, BART reduces
the redundancy transitioning time of BW by 22.0%, 25.9%,
11.8%, and 16.0% for (6, 2, 2), (6, 3, 2), (6, 3, 3), and (10, 2, 2),
respectively. We observe that the solution generation times
of BART are within 0.5 s for different (k,m, λ) in our testbed,
implying that the solution generation overhead is limited.

We also measure the bandwidth usage of BART as the
ratio between the MTL multiplied by the block size (i.e., the
amount of data transferred in the bottlenecked link) and the
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Figure 12: Experiment B2: Impact of block size.
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Figure 13: Experiment B3: Impact of network bandwidth.

transitioning time. Figure 11(b) shows the bandwidth usage
of BART; we also plot the available network bandwidth (mea-
sured by iperf) for comparisons. The bandwidth usage of
BART is close to the available network bandwidth, implying
that the transitioning performance is mainly bottlenecked by
the most loaded node. This also justifies our assumption that
network bandwidth is the main performance bottleneck (§3).
For example, BART introduces 95.5 MiB/s and 95.4 MiB/s of
bandwidth usage for (6, 3, 3) and (10, 2, 2), respectively.
Experiment B2: Impact of block size. We study the impact
of block size on the transitioning time. We vary the block
size from 32 MiB to 128 MiB, and set (k,m, λ) as (6, 3, 3)
and (10, 2, 2). Figure 12 shows the results. BART maintains
a fairly stable reduction of redundancy transitioning time
compared with BW for different block sizes. For example,
when the block size is 32 MiB, BART reduces the transitioning
time of BW for (6, 3, 3) and (10, 2, 2) by 12.4% and 15.3%,
respectively.
Experiment B3: Impact of network bandwidth. We also
study the impact of network bandwidth. We vary the network
bandwidth from 0.5 Gbps to 10 Gbps via the Wondershaper
tool [8]. We again set (k,m, λ) as (6, 3, 3) and (10, 2, 2).
Figure 13 shows the results. When the network bandwidth
increases, both BART and BW further reduce the transitioning
time, while BART still outperforms BW under different
network bandwidth settings. For example, when the net-
work bandwidth 10 Gbps, BART reduces the transitioning
time of BW for (6, 3, 3) and (10, 2, 2) by 15.0% and 21.1%,
respectively.

6 RELATED WORK

Redundancy transitioning. Earlier studies consider the tran-
sitioning from replication to erasure coding for storage sav-
ings [14], [28], [43]. Recent studies consider the transitioning
between erasure codes with different coding parameters.
HACFS [49] dynamically changes between high-redundancy
codes for hot data and low-redundancy codes for cold data.
ERS [46] co-designs the encoding matrix and data placement
to mitigate the I/Os in redundancy transitioning. HeART
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[25], PACEMAKER [24], and Tiger [23] consider disk-adaptive
redundancy to provide reliability guarantees with the lowest
possible redundancy based on the prediction of disk failure
rates. Note that HeART, PACEMAKER, and Tiger apply re-
encoding (§2.2), while we focus on load-balanced parity
merging.

Scaling. Scaling is a class of redundancy transitioning for
erasure coding that not only changes the coding parameters,
but also ensures the even storage distribution across all
nodes. Existing studies on scaling focus on RAID [44], [54]
and distributed storage [21], [48]. NCScale [19] shows that
the scaling bandwidth can be minimized via network coding.
Wu et al. [47] study the trade-off between the repair and
scaling performance for locally repairable codes [20] from a
data placement perspective.

Code conversion. Code conversion is another class of redun-
dancy transitioning that we target in this work. Maturana
and Rashmi [34] provide the first formal study for code
conversion, with the objective of minimizing I/Os during
code conversion. Follow-up studies include the analysis of
the lower bound of conversion I/Os for all valid parameters
[31] and conversion bandwidth [32], [33]. StripeMerge [51]
addresses the special case of parity merging with λ = 2, and
provides heuristics for implementing such parity merging in
practical storage deployment. Wu et al. [45] study the optimal
data placement for parity merging using locally repairable
codes [20]. ClusterRT [52] addresses code conversion in
rack-based data centers with limited cross-rack network
bandwidth. It applies re-encoding to merge every λ input
stripes to λ′ stripes (where 1 ≤ λ′ < λ), with the objective of
minimizing the cross-rack transitioning bandwidth. In this
work, we focus on load-balanced parity merging, where we
also address heterogeneous network environments.

Load balancing for erasure coding. Some studies address
load balancing in erasure-coded storage. EC-Cache [38]
employs erasure coding to overcome the load imbalance
from selective replication for object caching. EC-Scheduler
[12] considers heterogeneous environments and dynamically
adjusts the recovery workload for load balancing. Selective-
EC [50] and ParaRC [29] improve the recovery performance
via load-balanced recovery operations. Our work addresses
load balancing in redundancy transitioning.

7 CONCLUSION AND FUTURE WORK

We propose BART, a load-balanced redundancy transitioning
scheme that reduces the redundancy transitioning time via
carefully scheduled parallelization. BART builds on parity
merging and decomposes the parity merging problem into
three sub-problems that are solved by efficient heuristics, so
as to achieve load balancing while keeping the transitioning
bandwidth low. We evaluate BART via large-scale simula-
tions and HDFS prototype experiments on Alibaba Cloud to
demonstrate its effectiveness.

In this work, we focus on parity merging under
Vandermonde-based RS codes. We pose the extension to
general redundancy transitioning parameters and other
erasure codes (e.g., locally repairable codes [20], [27]) as
future work.
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