
Harmonizing Repair and Maintenance in LRC-Coded Storage

Keyun Cheng1, Si Wu2, Xiaolu Li3, and Patrick P. C. Lee1

1The Chinese University of Hong Kong 2University of Science and Technology of China
3Huazhong University of Science and Technology

Abstract—Modern storage systems not only introduce data
redundancy for fault tolerance, but also conduct regular main-
tenance operations on storage nodes for system robustness.
Erasure coding provides storage-efficient redundancy and has
been widely deployed in production, yet it also incurs substantial
bandwidth and I/O overhead due to the repair of storage
failures. In particular, maintenance operations make storage
nodes temporarily unavailable and lead to data unavailability,
thereby incurring repair overhead for erasure-coded storage. In
this paper, we study Locally Repairable Codes (LRCs), a class
of practical repair-efficient erasure codes, and show that there
exists an inherent performance trade-off between the repair and
maintenance operations of LRCs in data center settings, such
that the repair performance in regular (i.e., no-maintenance)
and maintenance modes cannot be simultaneously optimized. To
this end, we design a configurable data placement scheme that
operates along the trade-off subject to fault-tolerance constraints.
We prototype our data placement scheme atop Hadoop HDFS
and show how it balances the performance trade-off of repair
and maintenance operations in real network environments.

I. INTRODUCTION

Given the prevalence of failures [13], modern large-scale
storage systems often adopt various reliability mechanisms
to provide data availability and system robustness guarantees.
There are two key reliability mechanisms: (i) data redundancy
and (ii) system maintenance. Specifically, storage systems
introduce data redundancy, via replication or erasure coding, to
ensure that any stored data remains available and is recoverable
from redundant data even in the presence of failures. In addition,
system administrators regularly conduct maintenance on storage
nodes for system stability and robustness [13], [15], [20], [29];
for example, storage nodes perform periodic kernel upgrades
to keep the system up-to-date [27].

Replication is often used as a redundancy scheme by making
multiple exact data copies for fault tolerance, yet it incurs
significantly high storage overhead. Erasure coding is a storage-
efficient redundancy scheme and has been widely adopted in
production [1], [2], [9], [13], [24], [26]. It works by encoding
a set of original uncoded data blocks into coded parity blocks
(as redundant data), such that a subset of a sufficient number of
available data and parity blocks can decode a block. Compared
with replication, erasure coding achieves a higher degree of
reliability under the same amount of redundancy [39]. On
the other hand, erasure coding, albeit storage-efficient, suffers
from a high repair penalty, as repairing any failed block
by retrieving multiple available blocks for decoding, thereby
incurring substantial network transfers and disk I/Os.

In particular, the repair overhead of erasure coding makes
system maintenance more challenging. Maintenance of storage

systems is often conducted in the maintenance events over a
subset of storage nodes in a controlled manner. During the
execution of maintenance events, software restarts or machine
reboots of storage nodes are often necessary, thereby causing
the data stored in such storage nodes inaccessible. To address
data unavailability due to maintenance events for erasure-
coded storage, one approach is to put restrictions on data
placement, namely maintenance-robust deployment [20]. Specif-
ically, storage nodes are partitioned into multiple groups called
maintenance zones and maintenance events are only conducted
on a per-zone basis. Maintenance-robust deployment carefully
organizes erasure-coded blocks across multiple maintenance
zones, such that any block stored in any affected maintenance
zone can be reconstructed by retrieving the available blocks
from other unaffected maintenance zones; in other words,
any maintenance event will not make any block unavailable.
However, repairing any failed block during maintenance events
still incurs significant performance overhead, and how to
mitigate the performance overhead of maintenance events for
erasure-coded storage remains an unexplored issue.

In this paper, we study the performance tensions between re-
pair and maintenance operations for erasure-coded storage. We
focus on Locally Repairable Codes (LRCs) [19], [21], [33], [36],
which are a popular family of repair-efficient erasure codes that
mitigate the repair overhead over traditional erasure codes (e.g.,
Reed-Solomon codes [31]) at the expense of slightly higher
redundancy and have been adopted by industry [19]–[21]. LRCs
partition the data blocks into multiple small-size local groups,
each of which is further encoded with a local parity block,
such that a failed block can be repaired within a local group
with much fewer available blocks. Despite the repair efficiency
of LRCs, we show that there exists an inherent performance
trade-off between the repair and maintenance operations, such
that the repair performance in regular (no-maintenance) and
maintenance modes (measured by the cross-rack bandwidth in
rack-based data centers) cannot be simultaneously optimized.
We make the following contributions:

• We formulate a data placement problem for the repair
and maintenance operations in rack-based data centers. We
characterize the feasible data placements, and obtain the
optimal repair and maintenance schemes by solving integer
linear programming problems. We show the performance
trade-off between the repair and maintenance operations.

• We design a configurable data placement scheme that operates
along the trade-off between repair and maintenance operations
subject to the fault tolerance constraints.

Rack

Network Core

Node Node

Rack

Node Node

Rack

Node Node…

Figure 1: Example of a rack-based data center.

• We prototype different data placement schemes atop Hadoop
3.3.4 HDFS [2] and evaluate them using both numerical analy-
sis and testbed evaluation. Our evaluation results demonstrate
how the data placement schemes balance the performance
trade-off between the repair and maintenance operations. For
example, we can configure a repair-driven data placement
scheme that reduces the degraded read time in regular mode
by 68.5% compared with the optimal maintenance scheme,
while we can configure a maintenance-driven data placement
scheme that reduces the degraded read time in maintenance
mode by 31.7% compared with the optimal repair scheme.
The source code of our prototype is available at https://

github.com/adslabcuhk/openec-lrctradeoff.

II. BACKGROUND

A. Rack-based Data Centers

We consider a large-scale storage system that is deployed as
a rack-based data center [11], as shown in Figure 1. The storage
system comprises multiple nodes that are partitioned into
multiple racks, in which the nodes within a rack are connected
by a top-of-rack switch, while multiple racks are connected by
an aggregation layer of switches called the network core. We
assume that the cross-rack network transfer is the performance
bottleneck, as the cross-rack network bandwidth is much more
scarce than the inner-rack bandwidth [8], [11], [38]. Such a
hierarchical architecture also appears in geo-distributed erasure-
coded storage [10], where cross-region bandwidth is much more
limited than the inner-region bandwidth. In addition, the storage
system organizes data as large fixed-sized blocks (e.g., 128 MiB
in Hadoop HDFS [2] and 256 MiB in Facebook [29]); setting a
large block size can effectively mitigate the I/O access overhead
in networked environments.

B. Locally Repairable Codes (LRCs)

In this work, we focus on LRCs as the erasure coding
construction due to their repair efficiency.
Basics of LRCs. We construct an LRC by three parameters
(k, l,g), denoted by LRC(k, l,g). Specifically, LRC(k, l,g) en-
codes k data blocks (denoted by D1,D2, · · · ,Dk) into l local
parity blocks (denoted by P1,P2, · · · ,Pl) and g global parity
blocks (denoted by Q1,Q2, · · · ,Qg) based on some encoding
functions. Each set of k data blocks, l local parity blocks,
and g global parity blocks collectively form a stripe and are
distributed across k+ l + g nodes for fault tolerance. Large-
scale storage systems typically store multiple stripes that are
independently encoded. In this work, our analysis focuses on
a single LRC stripe.

There exist various LRC constructions in the literature [19],
[20], [33], [36]. In this work, we consider the LRC construction

D1 D2 P1D3 Q1

Q2

G1

Encoding Functions

① P1 = D1 + D2 + D3 + D4 + D5

② P2 = D6 + D7 + D8 + D9 + D10

③ Q1 = x1 D1 + x2 D2 + … + x9 D9 + x10 D10

④ Q2 = y1 D1 + y2 D2 + … + y9 D9 + y10 D10

D4 D5

D6 D7 P2D8G2 D9 D10

Figure 2: Example of an LRC(10,2,2) stripe.

based on Azure’s Local Reconstruction Codes (Azure-LRC)
[19], since it achieves the highest level of fault tolerance under
the same storage redundancy in rack-based data centers [16].
Specifically, it divides k data blocks into l equal-sized local
groups, assuming that k is divisible by l. Each local group
computes a local parity block from the bitwise-XOR-sum of
its b = k

l data blocks. All k data blocks are encoded into the g
global parity blocks based on Reed-Solomon codes [31], such
that any k out of the k+g data blocks and global parity blocks
can reconstruct all k data blocks. Figure 2 shows an example
of an LRC(10,2,2) stripe based on Azure-LRC, in which ‘+’
denotes the bitwise-XOR-sum, and x1,x2, · · · ,x10,y1,y2, · · · ,y10
are the encoding coefficients based on Reed-Solomon codes.
The figure also lists the encoding functions (i.e., 1 to 4) for
computing the local and global parity blocks.
Fault tolerance. The k+ l +g blocks of each LRC stripe are
distributed across multiple nodes and racks for fault tolerance.
Specifically, we store the k+ l +g blocks of an LRC stripe in
k+ l +g distinct nodes for multi-node fault tolerance. As rack
failures are much rarer than node failures [24], we focus on
single-rack fault tolerance [34], [40], [41]. We still distribute
the blocks of an LRC stripe across racks, but we also allow
multiple blocks of an LRC stripe to be stored in a rack so
as to limit cross-rack data transfers. Wu et. al [41] prove that
to achieve single-rack fault tolerance, each rack can store at
most g+h blocks of an LRC stripe that span h local groups
(where 1≤ h≤ l). In this case, we can decode at most g+h
failed data blocks with g+h available parity blocks from the
available racks.
Repair. There are two types of repair operations: (i) degraded
reads, in which a read request is issued to an unavailable
block, and (ii) full-node recovery, in which all lost blocks of a
failed node are recovered. As transient failures account for the
majority of all failure events (e.g., more than 90% of failure
events last less than 15 minutes [13]), we focus on degraded
reads to data blocks as the major repair operation in this work.

We define the average degraded-read cost (ADC) as the
average amount of cross-rack transfers (in units of blocks) to
repair an unavailable data block over all k data blocks (note
that local and global parity blocks are excluded). Here, we
assume that maintenance is not yet conducted, and the system
operates in regular mode (i.e., without maintenance). For a flat
data placement where each rack stores only one block of an
LRC stripe, the ADC is b, as each data block is repaired by
retrieving b−1 other available data blocks and the local parity
block in the local group for decoding.

https://github.com/adslabcuhk/openec-lrctradeoff
https://github.com/adslabcuhk/openec-lrctradeoff

D1 D2

D4

D6

P1

D3

P2

Degraded read of D1 (regular mode)

Degraded-read cost

Block Cost Encoding
Function

D1, D2, D3,
D4, D5

1 ①

D6, D7, D8,
D9, D10

2 ②

ADC: 1.5

H

R1

R2

R3

R4

R5

Degraded-read-
under-maintenance cost

Block Cost Encoding
Function

D1, D2, D3 11 ①③④

D4, D5 10 ③④

D6 2 ②

D7, D8 7 ②③

D9, D10 10 ③④

AMC: 8.9

D5

D8D7

Q1 Q2

D10D9

R6

Degraded read of D1 (maintenance mode)

Figure 3: Example of a random data placement for LRC(10,2,2).

For rack-based data centers, since multiple blocks of a local
group can be stored in a rack, the ADC also decreases. Figure 3
depicts the calculation of the ADC of a random data placement
for LRC(10,2,2) under single-rack fault tolerance, in which
the LRC stripe is distributed across 14 nodes across six racks
R1,R2, · · · ,R6. For example, D1 can be decoded by retrieving
D2 and D3 from the same rack R1, and one partially decoded
block D4 + D5 + P1 from rack R2 based on the encoding
function 1 in Figure 1. Thus, the amount of cross-rack transfers
is one block. We can calculate the ADC by averaging the
amount of cross-rack transfers over D1,D2, · · ·D10, and the
ADC in this case is 1.5.
Maintenance. Recall from §I that all data blocks within a
maintenance zone cannot be directly accessed during mainte-
nance. Given that maintenance events are scheduled a priori,
it is feasible to design a data placement scheme that satisfies
maintenance-robust deployment [20], such that no maintenance
events cause any data block unrecoverable (i.e., any unavailable
data block can still be decoded by the available blocks within
the same stripe from other maintenance zones). In this work,
we assume that a maintenance zone comprises one single
rack, where maintenance-robust deployment implies single-rack
fault tolerance, and at most one maintenance zone is under
maintenance at any time [20].

We now describe the degraded reads in maintenance mode
for a single data block; as opposed to the regular mode (see
above), all blocks stored in the rack under maintenance are
unavailable. Here, we conduct the repair in a helper node,
which retrieves the available blocks from other unaffected
racks for decoding. To simplify our analysis, we assume that
the helper node resides in a rack that does not store any blocks
of the corresponding stripe. We define the average degraded-
read-under-maintenance cost (AMC) as the average amount of
cross-rack transfers (in units of blocks) to repair an unavailable
data block over all k data blocks under maintenance. For a flat
data placement, the AMC is still b (i.e., the same as the ADC),
as any unavailable rack is equivalent to a single block failure.

We again consider the data placement in Figure 3 and
show how the AMC is calculated, where the helper node
(denoted by H) is responsible for conducting the degraded
reads in maintenance mode. For example, consider the de-
graded reads to D1 when rack R1 is under maintenance (i.e.,
D1, D2 and D3 are unavailable). The repair of D1 is done
by the associated three encoding functions 1 , 3 and 4
(where D1,D2 and D3 are treated as the unknown variables

D9 D10 P2

D6 D7 D8

D4 D5 P1

D1 D2 D3

Q1 Q2

R1

R2

R3

R4

R5

H

Regular mode Maintenance mode

ADC: 1 AMC: 8.6

Degraded read of D1

D1 D6

Q1 Q2

D2 D7

D3 D8

D4 D9

D5 D10

P1 P2

R1

R2

R3

R4

R5

R6

R7

H

ADC: 5 AMC: 5

Regular mode Maintenance mode

Degraded read of D1

(a) Combined locality (b) Maintenance-robust-efficient
deployment

Figure 4: Example of state-of-the-art data placements for LRC(10,2,2).
Combined locality shows a high AMC, while maintenance-robust-efficient
deployment shows a high ADC.

in decoding). First, it retrieves one partially decoded block
(i.e., D4 + D5 + P1) from rack R2 based on 1 . Second, it
retrieves five blocks from racks R2,R3, · · · ,R6 based on 3 (i.e.,
x4D4+x5D5,x6D6,x7D7+x8D8,x9D9+x10D10, and Q1, respec-
tively). Third, it retrieves five blocks from R2,R3, · · · ,R6 based
on 4 (i.e., y4D4+y5D5,y6D6,y7D7+y8D8,y9D9+y10D10, and
Q2, respectively). Thus, the amount of cross-rack transfers for re-
pairing D1 is 11 blocks. The average AMC over D1,D2, · · ·D10
for this data placement is 8.9.

C. Motivation

Extensive studies focus on minimizing the repair overhead
in regular mode for LRCs [16], [21], [36], [41]. However,
when maintenance is also considered, how to address the
repair performance tensions in both regular and maintenance
modes is unexplored. Here, we review two state-of-the-art data
placement schemes for LRC-coded storage: the repair-driven
scheme designed for optimizing the repair performance in
regular mode [16], and the maintenance-driven scheme designed
for optimizing the repair performance in maintenance mode
[20]. We show via examples that they cannot minimize the
degraded read overhead in both regular and maintenance modes.
Repair-driven data placements. Combined locality [16] is
an optimal data placement that minimizes the ADC in regular
mode subject to single-rack fault tolerance. It aggregates each
local group across a minimum number of racks, such that the
repair of each data block retrieves the minimum number of
blocks from the racks spanned by the corresponding local
group. Specifically, it stores an LRC stripe across ld b+1

g+1e+1
racks, where each local group (comprising b+ 1 blocks) is
stored across d b+1

g+1e racks, and the g global parity blocks are
stored in a distinct rack.

While combined locality minimizes the ADC in regular
mode, it incurs a high AMC in maintenance mode. Figure 4(a)
shows an example of combined locality for LRC(10,2,2). For
example, in regular mode, the repair of D1 incurs a cross-rack
transfer of one block from R2 to R1. However, in maintenance
mode, the repair of D1 transfers nine blocks, where the helper
node H needs to retrieve three, two, two, and two blocks from

R2,R3,R4, and R5, respectively. Overall, the ADC and AMC
of combined locality are 1 and 8.6, respectively.
Maintenance-driven data placements. Maintenance-robust-
efficient deployment [20] aims to mitigate the AMC in LRC-
coded storage, while preserving the single-rack fault tolerance
under maintenance-robust deployment. It spreads each local
group across a maximum number of racks, such that each
rack stores at most one block from any local group. Thus,
the repair of each data block retrieves the blocks based
on the corresponding encoding function in the local group.
Maintenance-robust-efficient deployment stores an LRC stripe
across b+2 racks, where each of the first b racks stores l data
blocks from l local groups. It then stores the l local parity
blocks and the g global parity blocks in the remaining two
racks, respectively.

We argue that maintenance-robust-efficient deployment
shows a high ADC. Figure 4(b) shows an example. The repair
of D1 in maintenance mode is five blocks (i.e., 44.4% less
than that of combined locality). However, the repair of D1 in
regular mode is five blocks (i.e., 5× that of combined locality).
Overall, the ADC and AMC of maintenance-robust-efficient
deployment are both 5.

III. PROBLEM AND ANALYSIS

We now characterize the feasible data placements for LRCs
that are maintenance-robust (i.e., single-rack fault tolerance)
and show the calculations of the ADC and AMC for a data
placement. We show how we can obtain the optimal repair
and maintenance schemes that minimize the ADC and AMC,
respectively, by solving integer linear programming (ILP)
problems. We further provide insights into the performance
trade-off between the repair and maintenance operations.

A. Modeling a Data Placement

We model a data placement for an LRC(k, l,g) stripe with
three sets of non-negative integer parameters, namely di, j, pi, j,
and qi where 1≤ i≤ k+ l +g and 1≤ j ≤ l. Let di, j and pi, j
be the numbers of data blocks and local parity blocks from
the j-th local group G j stored in rack Ri, respectively, and
let qi be the number of global parity blocks stored in rack Ri.
Let I(x) be the indicator function of an input integer x, where
I(x) = 1 when x is positive or I(x) = 0 otherwise. We derive
the following constraints on a feasible data placement:

∑
k+l+g
i=1 di, j = b for each 1≤ j ≤ l, (1)

∑
k+l+g
i=1 pi, j = 1 for each 1≤ j ≤ l, (2)

∑
k+l+g
i=1 qi = g , (3)

qi +∑
l
j=1(di, j + pi, j)≤ g+∑

l
j=1 I(di, j + pi, j)

for each 1≤ i≤ k+ l +g. (4)

We elaborate on the constraints as follows. Equations (1),
(2), and (3) limit the total numbers of data blocks, local parity
blocks, and global parity blocks spanned across all racks,
respectively. Equation (4) ensures that each rack stores at

D1 D2

D4

D6

P1

D3

P2

D5

D8D7

Q1 Q2

D10D9

Modeling Parameters
qipi,jdi,j

d1,1 = 3
p2,1 = 1d2,1 = 2

d3,2 = 1
d4,2 = 2

p5,2 = 1d5,2 = 2
q6 = 2

ConstraintEquation
d1,1 + d2,1 = 5
d3,2 + d4,2 + d5,2 = 5

(1)

p2,1 = 1
p5,2 = 1

(2)

q6 = 2(3)
d1,1 ≤ 2 + 1
d2,1 + p2,1 ≤ 2 + 1
d3,2 ≤ 2 + 1
d4,2 ≤ 2 + 1
d5,2 + p5,2 ≤ 2 + 1
q6 ≤ 2

(4)

R1

R2

R3

R4

R5

R6

Figure 5: Example of the data placement of LRC(10,2,2) in Figure 3. The
data placement satisfies all constraints Equations (1)-(4).

most g+h blocks that span h local groups (where 1≤ h≤ l) to
preserve single-rack fault tolerance [41] (§II-B). In Equation (4),
the left-hand side calculates the total number of blocks stored in
Ri, while the right-hand side calculates the maximum number of
blocks that can be stored in Ri. Note that I(di, j + pi, j) indicates
whether any block from G j is stored in Ri, and ∑

l
j=1 I(di, j+ pi, j)

calculates the number of local groups spanned in Ri. Figure 5
shows the modeling of the data placement shown in Figure 3,
and the constraints Equations (1)-(4) are all satisfied.

B. Calculating the ADC

We show how the ADC of a data placement is calculated. We
first calculate the amount of cross-rack transfers of a degraded
read to a single block in regular mode. Suppose that we repair
a data block from local group G j stored in rack Ri. It retrieves
blocks based on the encoding function of local parity block Pj
for decoding. Specifically, it retrieves a total of δ j−1 blocks,
where δ j denotes the number of racks spanned by G j:

δ j = ∑
k+l+g
i=1 I(di, j + pi, j) for each 1≤ j ≤ l, (5)

where I(di, j + pi, j) indicates whether any block of G j is stored
in Ri, and δ j counts the number of such racks.

Let ri, j be the amount of cross-rack transfers (in units of
blocks) to repair a data block from G j stored in Ri in regular
mode. We have ri, j = δ j− 1. There are di, j blocks from G j
stored in Ri, where the repair of each block retrieves ri, j blocks.
Thus, we can calculate ADC as follows:

ADC = 1
k ∑

k+l+g
i=1 ∑

l
j=1 di, jri, j

= 1
l ∑

l
j=1(δ j−1), (6)

where we average the amount of cross-rack transfers over the
k data blocks from l local groups stored in k+ l+g racks. The
deduction of Equation (6) is based on Equation (1).

For example, in Figure 5, the repair of D1 in regular mode
retrieves one block, which can be represented by r1,1 = δ1−1.
The ADC can be calculated as 1

2 × ((2−1)+(3−1)) = 1.5.
Optimality of ADC. We can obtain the optimal repair scheme
that minimizes the ADC by solving an ILP problem. The
optimization objective is to find an assignment of the modeling
parameters (i.e., di, j, pi, j, and qi) to minimize the objective
function (i.e., Equation (6)), subject to the constraints (i.e.,
Equations (1)-(4)). The above ILP problem can be solved with
the branch-and-bound method [3].

We provide an intuition for optimizing the ADC. From
Equation (6), the ADC is minimized when δ j is minimized

for each local group G j simultaneously. This is achievable
when each local group spans the minimum number of racks.
To preserve single-rack fault tolerance, each rack stores at
most g+1 blocks from a local group (§II-B). Thus, each G j
(with b+1 blocks) spans δ j = d b+1

g+1e racks. Repair-driven data
placements satisfy the above property and hence minimize the
ADC (§II-C).

C. Calculating the AMC

We show how to calculate the AMC of a data placement.
We consider two types of repair operations, namely local
decoding and global decoding, in maintenance mode. Suppose
that rack Ri is under maintenance. Let mi, j be the amount of
cross-rack transfer (in units of blocks) to repair a data block
from G j stored in Ri in maintenance mode.
Local decoding. Local decoding of a data block is done by
retrieving the blocks within the same local group of the data
block. It is feasible only when di, j = 1 and pi, j = 0, meaning
that the data block should be the only block of G j stored in Ri.
The reason is that the other data blocks of G j and the local
parity block Pj need to be available for decoding, and hence
they cannot be stored in Ri. Similar to the repair in regular
mode, we have mi, j = δ j−1.

For example, in Figure 3, when R3 is under maintenance, the
repair of D6 in maintenance mode retrieves two blocks (i.e.,
D7 +D8 and D9 +D10 +P2), where local decoding is feasible
(as d3,2 = 1 and p3,2 = 0). The amount of cross-rack transfers
for D6 is m3,2 = δ2−1 = 2.
Global decoding. Global decoding of a data block is done
by retrieving the blocks spanning multiple local groups within
the same stripe of the data block. It addresses two cases: (i)
di, j = 1 and pi, j = 1, and (ii) di, j ≥ 2, meaning that multiple
blocks from G j are stored in Ri. Specifically, we form a system
of equations by associating ∑

l
x=1 di,x encoding functions for

decoding, where the ∑
l
x=1 di,x data blocks stored in Ri are

treated as unknown variables in decoding. For each local group
Gx (where 1 ≤ x ≤ l), if some data blocks of Gx are stored
in Ri (i.e., di,x ≥ 1), we select di,x encoding functions to form
the equations. The selection of encoding functions depends
on the value of pi,x (i.e., whether the local parity block Px is
stored in Ri), which affects the amount of cross-rack transfers
for decoding. Let σ be the total number of racks spanned by
all data blocks:

σ = ∑
k+l+g
i=1 I(∑

l
j=1 di, j). (7)

We elaborate on the selection of encoding functions as follows:
• When pi,x = 0 (i.e., Px is not stored in Ri and hence available),

we select the encoding function of Px, plus di,x−1 encoding
functions of di,x−1 available global parity blocks. To solve an
equation based on Px, we retrieve δx−1 blocks for decoding.
To solve an equation based on a global parity block, we
retrieve σ blocks for decoding, including the global parity
block and σ −1 blocks from the unaffected racks spanned
by the data blocks. In total, it retrieves (di,x−1)σ +δx−1
blocks for decoding.

• When pi,x = 1 (i.e., Px is unavailable), we select di,x encoding
functions of di,x available global parity blocks. Solving an
equation based on a global parity block retrieves σ blocks
for decoding. In total, it retrieves di,xσ blocks for decoding.

We can calculate mi, j = γi, where γi denotes the amount of
cross-rack transfers to solve all equations (for Ri):

γi = ∑
l
x=1 I(di,x)(di,xσ +(1− pi,x)(δx−σ −1)), (8)

in which we sum up the number of blocks retrieved for each
local group Gx where di,x ≥ 1 (i.e., I(di,x) = 1).

For example, in Figure 3, when R1 is under maintenance, the
repair of D1 in maintenance mode retrieves 11 blocks, which
requires global decoding (as d1,1 ≥ 2). We associate three
encoding functions to form a system of equations, where D1,
D2, and D3 are treated as the unknown variables. As d1,1 ≥ 1
and p1,1 = 0, we select the encoding function 1 of local parity
block P1, and two encoding functions 3 and 4 of global parity
blocks Q1 and Q2, respectively. For 1 , we retrieve δ1−1 = 1
block. For each of 3 and 4 , we retrieve σ = 5 blocks. The
amount of cross-rack transfers for D1 can be represented by
m1,1 = γ1. Note that the repair of both D2 and D3 also requires
global decoding, and hence retrieves γ1 blocks for decoding.

We can now calculate the AMC as follows by averaging the
amount of cross-rack transfers over the k data blocks from l
local groups stored in k+ l +g racks:

AMC = 1
k ∑

k+l+g
i=1 ∑

l
j=1 di, jmi, j, where

mi, j =

0 for di, j = 0,
δ j−1 for di, j = 1, pi, j = 0,
γi for di, j = 1, pi, j = 1 or di, j ≥ 2.

(9)

Optimality of AMC. We can also obtain the optimal data
placement that minimizes the AMC by solving an ILP problem,
where the optimization objective is Equation (9), and the
constraints are Equations (1)-(4). However, compared with
ADC, optimizing AMC is computationally much more difficult.
Intuitively, the calculation of AMC needs to consider both local
decoding and global decoding; in particular, global decoding
needs to solve multiple equations based on some local and
global encoding functions, where the selection of encoding
functions also depends on the values of modeling parameters
(i.e., di, j and pi, j). Nevertheless, we provide an insight into
finding the optimality of AMC. The key idea is that the amount
of cross-rack transfers to repair a data block in maintenance
mode can be minimized only if local decoding is feasible. We
support the insight with the following proposition:

Proposition 1. Suppose that di, j ≥ 1 for some rack Ri and
local group G j (where 1≤ i≤ k+ l +g and 1≤ j ≤ l). Then
mi, j is minimized only when di, j = 1 and pi, j = 0.

Proof. First, we prove that when (i) di, j = 1 and pi, j = 1, or
(ii) di, j ≥ 2, we have mi, j ≥ σ . It corresponds to the case
that global decoding is required, and hence mi, j = γi. Based
on Equation (8), γi is minimized only when (i) di, j = 1 and
pi, j = 1 for G j, and (ii) di,x = 0 for each Gx where 1≤ x≤ l

and x 6= j, meaning that Ri stores only one data block of G j
as well as local parity block Pj. In this case, we have γi = σ .
Thus, we have mi, j ≥ σ .

Next, we discuss the opposite case when di, j = 1 and pi, j = 0,
where local decoding is feasible and hence mi, j = δ j−1. Now
we show that δ j−1≤ σ for any G j (where 1≤ j ≤ l), as the
number of racks spanned by G j (i.e., δ j) must be no larger
than the number of racks spanned by all data blocks (i.e., σ)
plus one (even when local parity block Pj is not co-located
with any data block of G j). Hence, we complete the proof.

Proposition 1 shows that to repair a data block in mainte-
nance mode, global decoding retrieves more blocks than local
decoding. It suggests that to minimize the amount of cross-rack
transfers for decoding, the block should not be co-located with
any other blocks from its local group in a rack, so that local
decoding is feasible.

We argue that there exists a design dilemma in minimizing
the AMC. Recall that local decoding of a block from G j
retrieves δ j−1 blocks (Equation (9)). To minimize the cross-
rack transfers for decoding in maintenance mode, we also
need to minimize δ j. To achieve this, the remaining blocks
from G j need to be aggregated in the minimum number of
racks. However, the repair of any remaining block of G j in
maintenance mode requires global decoding, which significantly
enlarges the AMC. On the other hand, we can spread the blocks
of G j across the maximum number of racks, such that local
decoding is feasible to repair any block (e.g., maintenance-
driven data placement). Meanwhile, as δ j is also maximized,
the cross-rack transfers for local decoding cannot be minimized.
Nevertheless, we show via evaluation that maintenance-driven
data placement can achieve a near-optimal AMC and effectively
reduce the degraded read time in maintenance mode (§V).
Discussion. From prior analysis, the optimization of ADC and
AMC shows two inherently different directions. To minimize
the ADC, each local group should span the minimum number
of racks, but it enlarges the AMC, as most data blocks need
global decoding. On the other hand, to minimize the AMC,
each local group tends to span the maximum number of racks
to enable local decoding, but it enlarges the ADC. Thus, we
cannot minimize both ADC and AMC simultaneously.

IV. CONFIGURABLE DATA PLACEMENT SCHEME

We design a configurable data placement scheme that
operates along the trade-off between ADC and AMC subject to
single-rack fault tolerance. By adjusting a single configuration
parameter that controls the aggregation degree of data blocks,
our configurable data placement scheme effectively balances
the degraded read performance in both regular and maintenance
modes. We first present our configurable data placement scheme
with a guiding example (§IV-A), followed by the trade-off
analysis based on our modeling (§IV-B).

A. Design Details

Our configurable data placement scheme generates a data
placement for an LRC(k, l,g) stripe that provides single-rack
fault tolerance. It uses a configuration parameter η (where

R1

R2

R3

R4

R5 D5

D1

D2

D3

D4 D9

D10

D6

D7

D8

R6

R7 Q1

P1 P2

Q2

G1 G2Local
Decoding

Local
Decoding

ADC: 5
AMC: 5

D1

D6

D2

D7

Q1 Q2

D3

D8

D5

D4 D9

D10

P1 P2

R1

R2

R3

R4

R5

R6

G1

G2

ADC: 3
AMC: 7.8

Global
Decoding

Local
Decoding

D9

D1

D4

D6 D7 D8

D10

D2

D5

P2

Q1 Q2

D3

P1

ADC: 1
AMC: 8.6

R1

R2

R3

R4

R5

G1

G2

Global
Decoding

Global
Decoding

(a) η = 0 (b) η = 1 (c) η = 2

Figure 6: Example of data placements generated by our data placement scheme
for LRC(10,2,2).

0≤η ≤d b
g+1e) to control the aggregation degree of data blocks.

Specifically, η controls the proportion of data blocks from the
same local group that are aggregated within a limited number
of racks, such that (i) with a small η , it generates a data
placement with a low AMC and a high ADC, where a large
proportion of data blocks from the same local group are spread
across different racks; (ii) by increasing η , it trades AMC
for ADC, where more data blocks from the same local group
are aggregated in a limited number of racks. We present our
configurable data placement scheme as follows:
• Step 1 (Co-locate data blocks of a local group): For each

local group G j (where 1≤ j ≤ l), we choose η new racks
and put g+1 data blocks of G j in each new rack.

• Step 2 (Spread data blocks of a local group): For each local
group G j, we spread the remaining b−η(g+1) data blocks
in b−η(g+1) new racks. In each new rack, we co-locate l
data blocks from l different local groups.

• Step 3 (Put local parity blocks): We choose one new rack
and put l local parity blocks in the rack.

• Step 4 (Put global parity blocks): We choose one new rack
and put g global parity blocks in the rack.

Note that there remains a corner case of Step 1. When η =
d b

g+1e, if b is not divisible by g+1, one of the η new racks
will store fewer than g+1 data blocks from G j. In this case,
we put the remaining b mod (g+1) data blocks, together with
the corresponding local parity block in the new rack. Step 3
does not need to be performed accordingly, as all local parity
blocks are placed in Step 1.
Guiding example. For a better illustration of the performance
trade-off, we walk through a guiding example for LRC(10,2,2),
as shown in Figure 6.
• First, in Figure 6(a), we set η = 0 to generate a maintenance-

driven data placement, which has a low AMC and a high
ADC. In Step 1, we do not co-locate any data block from the
same local group. In Step 2, we choose five new racks (i.e.,
R1,R2, · · · ,R5), where we spread one data block of G1 and
G2 in each rack. In Step 3, we put P1 and P2 in R6. In Step 4,
we put Q1 and Q2 in R7. While local decoding is feasible for
each data block to reduce the amount of cross-rack transfers
in maintenance mode, it enlarges the amount of cross-rack

transfers in regular mode. We take the degraded read of both
D1 and D4 as examples. In regular mode, repairing D1 and
D4 each retrieves five blocks, while in maintenance mode,
repairing D1 and D4 each also retrieves five blocks, where
local encoding is feasible for both blocks. Overall, the ADC
and AMC of the data placement are both 5.

• Next, in Figure 6(b), we increase η to 1 to trade AMC
for ADC. In Step 1, we co-locate D1, D2, and D3 from
G1 in R1, and co-locate D6, D7, and D8 from G2 in R2.
In Step 2, we put D4 and D9 in R3, and put D5 and D10
in R4. In regular mode, the amount of cross-rack transfers
for decoding is reduced, as each local group spans fewer
racks. In maintenance mode, a proportion of data blocks now
requires global decoding, such that the amount of cross-rack
transfers for decoding increases. For example, in regular
mode, decoding D1 and D4 each retrieves three blocks. In
maintenance mode, decoding D1 retrieves 11 blocks, as global
decoding is required; decoding D4 retrieves three blocks, as
local decoding is feasible. Overall, the ADC decreases to 3,
while the AMC increases to 7.8.

• Finally, in Figure 6(c), we set η = 2 to generate a repair-
driven data placement. We co-locate all blocks of G1 in
R1 and R2, and co-locate all blocks of G2 in R3 and R4. In
regular mode, the amount of cross-rack transfers for decoding
is minimized, as each local group spans the minimum number
of racks. In maintenance mode, decoding a block needs a
large amount of cross-rack transfers, as global decoding is
required. For example, in regular mode, decoding D1 and D4
each retrieves one block. In maintenance mode, decoding D1
and D4 retrieves nine and eight blocks, respectively, where
global decoding is required for both blocks. Overall, the
ADC decreases to 1, while the AMC increases to 8.6.

B. Trade-off Analysis

We analyze the trade-off between AMC and ADC based on
our modeling in §III-A. Specifically, for LRC(k, l,g), both ADC
and AMC can be represented as a function of the configuration
parameter η . We show that for most LRC parameters (k, l,g),
when η increases, the ADC decreases while the AMC increases.
Modeling. Given the configuration parameter η , we show the
assignment of modeling parameters of the corresponding data
placement. To simplify our analysis, we first assume that b is
a multiple of g+1, where we discuss the case when b is not
divisible by g+1 later.

• To initialize the model, we set di, j, pi, j, and qi as 0 for each
i ∈ [1,k+ l +g] and for each j ∈ [1, l].

• In Step 1, for each j ∈ [1, l], we set di, j = g+ 1 for each
i ∈ [(j−1)η +1, jη]. It means that for each local group G j,
we co-locate (g+1)η data blocks of G j in η new racks (i.e.,
R(j−1)η+1,R(j−1)η+2, · · · ,R jη), where each rack stores g+1
data blocks.

• In Step 2, for each i ∈ [lη +1,(l−g−1)η +b] and for each
j∈ [1, l], we set di, j = 1. It means that for each local group G j,
we spread the remaining b− (g+1)η data blocks of G j in
b− (g+1)η new racks (i.e., Rlη+1,Rlη+2, · · · ,R(l−g−1)η+b).

In each new rack, we co-locate l data blocks from l local
groups.

• In Step 3, for each j ∈ [1, l], we set p(l−g−1)η+b+1, j = 1,
meaning that we put the l local parity blocks in rack
R(l−g−1)η+b+1.

• In Step 4, we set q(l−g−1)η+b+2 = g, meaning that we put
the g global parity blocks in rack R(l−g−1)η+b+2.

When b is not divisible by g+1, we only discuss the case
where η = d b

g+1e. In this case, for each j ∈ [1, l], we set d jη , j =
b mod (g+1) and p jη , j = 1, meaning that we co-locate b mod
(g+1) data blocks and the local parity block of G j in R jη .

For the assignment of modeling parameters, we can verify
that the constraints (Equations (1)-(4)) are all satisfied.
Analysis of ADC. We can express the ADC of the data
placement as a function of η . For each local group G j, we
have δ j =−gη +b+1. From Equation (6), we can derive the
ADC as follows:

ADC(η) =−gη +b. (10)

It implies that when η increases, the ADC linearly decreases.
Analysis of AMC. Similarly, we can also express the AMC of
the data placement as a function of η . Based on Equation (9),
we calculate the amount of cross-rack transfers for repairing a
data block in maintenance mode.

First, we focus on the data blocks placed in Step 1 (e.g., D1
in Figure 6(b)), where repairing each data block requires global
decoding, as each rack co-locates with multiple blocks from the
same local group. For each rack Ri where 1≤ i≤ lη , it is only
spanned by local group G j, where di, j = g+1 and pi, j = 0. From
Equations (7) and (8), we can derive the amount of cross-rack
transfers for global decoding as γi = (l−g−2)gη +(g+1)b.
There are a total of (g+ 1)lη data blocks stored in Ri that
require global decoding, where the decoding of each block
transfers γi blocks.

Next, we focus on the data blocks placed in Step 2 (e.g., D4
in Figure 6(b)), where local decoding is feasible to repair each
block, as each rack only stores one data block from each local
group. The amount of cross-rack transfers for local decoding
is δ j−1 =−gη +b. There are a total of −(g+1)lη + lb data
blocks stored in Ri that are feasible for local decoding, where
the decoding of each block transfers −gη +b blocks.

Thus, we can derive the AMC as follows:

AMC(η) =
(l−g−1)(g+1)g

b η
2 +g2

η +b, (11)

where the AMC is a quadratic function η , and the coding
parameters (k, l,g) (where b= k

g) also affect how AMC changes
with η . Let η∗ = bg

2(g+1)(g+1−l) , where AMC(η) takes the
extreme value at η = η∗.

• When g = l − 1, AMC(η) = g2η + b, which is a linear
function of η . It implies that when η increases, the AMC
linearly increases.

• When g < l−1, as the coefficient of the quadratic term (i.e.,
(l−g−1)(g+1)g

b) is positive and η∗ < 0, AMC(η) takes the
minimum value when η = η∗. In our data placement scheme

where η ≥ 0, it implies that when η increases, the AMC
also increases.

• When g > l−1, as the coefficient of the quadratic term is
negative and η∗ > 0, AMC(η) takes the maximum value at
η = η∗. In our data placement scheme where 0≤ η ≤ d b

g+1e,
if η∗ ≥ d b

g+1e, when η increases, the AMC also increases.
Otherwise, if η∗ < d b

g+1e, when η increases, the AMC first
increases when η ≤ η∗, then decreases when η > η∗. In this
case, we can derive that g > 2l−2.
We argue that for most LRC coding parameters (where

g≤ 2l−2), when η increases, the AMC increases. This is true
for most LRC parameters reported in the literature, where the
number of global parity blocks remains limited to suppress
the storage overhead (e.g., (12,2,2) in [19], (6,3,2) in [21],
(20,4,2) in [16], (48,4,3) in [20]).

We now address the case when b is not a multiple of g+1.
When 0≤ η ≤ d b

g+1e−1, the prior analysis still holds. Here,
we only discuss how ADC and AMC vary when η increases
from d b

g+1e−1 to d b
g+1e. For each local group, the remaining

b mod (g+1) data blocks and the corresponding local parity
block are co-located in a rack, such that δ j decreases and hence
the ADC decreases (see Equation (6)). On the other hand, for
each of b mod (g+1) data blocks, as more data blocks now
require global decoding, the AMC increases.

V. EVALUATION

We evaluate the repair performance in both regular and
maintenance modes for different data placements via numerical
analysis and testbed experiments. We aim to address the
following questions: (i) Can our data placement scheme balance
the trade-off between ADC and AMC? (ii) How do the coding
parameters affect ADC and AMC? (iii) What is the degraded
read performance in regular mode and maintenance mode of
the data placements under different system configurations?

In our evaluation, we consider the following baseline data
placements: (i) the flat data placement (denoted by Flat), (ii)
the optimal repair scheme (denoted by Opt-R), and (iii) the
optimal maintenance scheme (denoted by Opt-M). For Flat, the
ADC and AMC are both b, where repairing a data block in
both regular and maintenance modes retrieves blocks within the
corresponding local group (§II-B). For Opt-R and Opt-M, we
obtain them by solving the corresponding ILP problems (§III).
We implement an ILP solver based on Gurobi [3], a highly
optimized solver to address general ILP problems. Gurobi also
supports solving objective functions with indicator functions
(i.e., I(.) in §III) [5]. Our implementation is written in Python
with around 170 LoC.

We run the ILP solver on a Ubuntu 22.04 machine equipped
with two 12-core 2.2 GHz Intel Xeon CPUs, 64 GiB RAM. For
each optimization objective, the ILP solver finds a feasible
assignment of parameters that minimizes the objective function.
Note that the solving time of an ILP problem depends on the
complexity of the objective function as well as the solution
space. For practical consideration, we set a timeout for the
solver to limit the search time, such that when the solver finishes

η = 0

η = 2

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5
ADC

A
M

C

Flat Opt-R
Opt-M Trade-off

η = 0

η = 2

0

5

10

15

0 1 2 3 4 5
ADC

A
M

C

Flat Opt-R
Opt-M Trade-off

η = 0

η = 3

0
6

12
18
24
30

0 2 4 6 8 10
ADC

A
M

C

Flat Opt-R
Opt-M Trade-off

(a) (10,2,2) (b) (20,4,2) (c) (30,3,3)
Figure 7: Experiment A1: Trade-off analysis.

(10,2,2) (20,4,2) (30,3,3)
ADC 0.01s 1.19s 1.97s
AMC 57.05s >4h >4h

Table I: Running time of the ILP solver.

before the timeout, it returns the optimal solution; otherwise,
it returns the currently best feasible solution found within the
time limit without guaranteed optimality [25].

For our configurable data placement scheme, we vary η from
0 to d b

g+1e to generate d b
g+1e+1 data placements, and denote

each of them by Trade-off-η . We then obtain the trade-off curve
between ADC and AMC. Note that Trade-off-0 corresponds to
the maintenance-driven data placement, while Trade-off-d b

g+1e
corresponds to the repair-driven data placement.

A. Numerical Analysis

We study the ADC and AMC of LRC(k, l,g) for different
data placements. For each data placement, we calculate the
ADC and AMC based on Equations (6) and (9), respectively.
Experiment A1: Trade-off analysis. Figure 7 shows the results
of (k, l,g) = (10,2,2), (20,4,2), and (30,3,3). For our data
placement scheme, when η increases, the AMC increases while
the ADC decreases. In particular, Trade-off-2 (i.e., repair-driven)
achieves the optimal ADC as Opt-R, while Trade-off-0 (i.e.,
maintenance-driven) has a slightly higher AMC than Opt-M.
For example, for (10,2,2), Trade-off-2 reduces the ADC of
Opt-M by 75%, while Trade-off-0 reduces the AMC of Opt-R
by 41.8% and increases the AMC of Opt-M by 13.6%. For
Trade-off-1, it reduces the ADC of Opt-M by 25% and reduces
the AMC of Opt-R by 9.3%, so it strives a balance between
the ADC and AMC.

Table I shows the running time of the ILP solver to obtain
the optimal schemes, where we set the timeout as four hours
to allow the evaluation of different parameters [25]. While we
can find Opt-R quickly (which takes less than 2 s), finding
Opt-M takes a significantly longer time, especially when k is
large. One reason is that the objective function of AMC (i.e.,
Equation (9)) introduces a large number of variables in the
ILP solver (e.g., from the indicator functions [5]), where the
variables are highly correlated (e.g., from local decoding and
global decoding). This leads to long time.

We further study the impact of coding parameters k, l, and
g on ADC and AMC. For simplicity, we only consider data
placements generated by our data placement scheme in the
following discussions.
Experiment A2: Impact of k. We study the impact of k on
the ADC and AMC. We consider (l,g) = (2,2) and (3,3), and
vary k to up to 30. Figure 8 shows the results; note that a
larger k allows more options for η , so there are more points
on the curve of ADC and AMC. For the same η , both ADC

0

6

12

18

24

30

0 3 6 9 12 15
ADC

A
M

C
(10,2,2) (16,2,2)
(20,2,2) (28,2,2)

0

6

12

18

24

30

0 2 4 6 8 10
ADC

A
M

C

(12,3,3) (18,3,3)
(24,3,3) (30,3,3)

(a) (l,g) = (2,2) (b) (l,g) = (3,3)
Figure 8: Experiment A2: Impact of k.

0

5

10

15

20

25

0 2 4 6 8 10
ADC

A
M

C

(20,2,2) (20,4,2)
(20,5,2) (20,10,2)

0

10

20

30

40

0 3 6 9 12 15
ADC

A
M

C

(30,2,3) (30,3,3) (30,5,3)
(30,6,3) (30,10,3) (30,15,3)

(a) (k,g) = (20,2) (b) (k,g) = (30,3)
Figure 9: Experiment A3: Impact of l.

and AMC increase with k. The reason is that when k increases,
each local group contains more blocks and hence spans more
racks, such that a repair retrieves more blocks. For example, for
(24,3,3), when η increases from 0 to 2, the ADC decreases
from 8 to 2, while the AMC increases from 8 to 20.
Experiment A3: Impact of l. We study the impact of l on the
ADC and AMC. We consider (k,g) = (20,2) and (30,3) and
vary l from 2 to k

2 (i.e., each local group has two data blocks).
Figure 9 shows the results. For ADC, when l increases, the ADC
decreases for the same η , as each local group contains fewer
blocks and hence spans fewer racks, such that the degraded
read in regular mode retrieves fewer blocks. For AMC, when
l increases, the AMC increases for the same η , since more
data blocks are aggregated in the same racks, where they
require global decoding in maintenance mode. For example,
for (20,2,2), when η increases, the ADC decreases from 10
to 3, while the AMC increases from 10 to 17.9.
Experiment A4: Impact of g. We study the impact of g on
the ADC and AMC. We consider (k, l) = (20,2) and (30,3)
and vary g from 2 to 4. Figure 10 shows the results. When
g increases, the trade-off curves appear close. When η = 0,
it retrieves b blocks for both regular and maintenance modes
independent of g. When η = d b

g+1e, the number of blocks
retrieved for maintenance is close to k, meaning that most
blocks of the stripe need to be retrieved for decoding. For
example, for (30,3,2), when η increases from 0 to 4, the ADC
decreases from 10 to 3, while the AMC increases from 10
to 25.5. Note that for (20,2,4), when η increases, the AMC
first increases when η = 1, and then decreases when η = 2. It
corresponds to the case when g > 2l−2 (§IV-B).

B. Testbed Evaluation

We present testbed evaluation results. Our goal is to show
that the repair performance in a real distributed storage system
conforms to our findings in numerical analysis.
Prototype implementation. We prototype different data place-
ments atop Hadoop 3.3.4 HDFS [2]. Our implementation builds
with OpenEC [22], a middleware system that runs atop HDFS

0

5

10

15

20

0 2 4 6 8 10
ADC

A
M

C

(20,2,2) (20,2,3) (20,2,4)

0
5

10
15
20
25
30

0 2 4 6 8 10
ADC

A
M

C

(30,3,2) (30,3,3) (30,3,4)

(a) (k, l) = (20,2) (b) (k, l) = (30,3)
Figure 10: Experiment A4: Impact of g.

and provides a unified erasure coding interface based on direct
acyclic graphs. HDFS comprises a NameNode for storage
management and multiple DataNodes for data storage. HDFS
organizes data in fixed-size blocks and supports rack-based
settings [4]. Our implementation extends OpenEC to support
the repair of LRCs in both regular and maintenance modes in
rack-based settings, where we use ISA-L [6] to implement the
erasure coding functionalities. It adds 3.1 K LoC to OpenEC.
Evaluation methodology. We evaluate our prototype in small-
scale rack-based settings. We set up a local cluster with 17
machines, each of which has a quad-core 3.4 Ghz Intel Core i5
CPU, 16 GiB RAM, and a 7200 RPM 1 TB SATA hard disk. All
machines are installed with Ubuntu 22.04 and are connected
via a 10 Gbps Ethernet switch. To simulate a rack-based setting,
we assign one dedicated machine to act as the network core,
and direct all cross-rack traffic through the network core. We
also assign one machine as the NameNode and the remaining
machines as the DataNodes. We use Wondershaper tool [7] to
configure the outgoing bandwidth of the network core.

We use the following default configurations. We choose
LRC(10,2,2) as the coding parameters (as in [21]) that fit the
cluster size, and evaluate the degraded read performance in
both regular and maintenance modes. We evaluate Flat, Opt-S,
Opt-M, and our data placement scheme, where we vary η from
0 to 3. We set the block size as 64 MiB, the packet size (i.e.,
the smallest data unit for data transfer) as 1 MiB, and the cross-
rack bandwidth as 1 Gbps [33] (i.e., the ratio of inner-rack to
cross-rack bandwidth is 10:1). We also vary the block size and
cross-rack bandwidth in our experiments.

We measure the degraded read time in both regular and
maintenance modes. The degraded read time is defined as
the time from issuing a degraded read request to a failed
block until the repaired block has been retrieved. For each
data placement, we configure the rack topology in HDFS, and
assign one DataNode as the helper node to issue a degraded
read. We first write an LRC stripe to HDFS and ensure that
the helper node does not store any block of the stripe. We
next erase a block from the stripe. We then issue a degraded
read to the erased data block, in which the helper node queries
the NameNode for the DataNodes storing the available blocks
and retrieves the blocks for decoding. In regular mode, we
configure the helper node to reside in the rack storing the failed
block. In maintenance mode, we configure the helper node to
reside in a rack that does not store any block of the stripe.
We measure the degraded time each of the k data blocks in
a stripe, and average the results over the k data blocks. We

0

1

2

3

4

Flat
Opt-R

Opt-M

Tradeoff-0

Tradeoff-1

Tradeoff-2(R
)

D
eg

ra
d
ed

 r
ea

d
 t

im
e

(s
ec

)

0

1

2

3

4

5

Flat
Opt-R

Opt-M

Tradeoff-0

Tradeoff-1

Tradeoff-2(M
)

D
eg

ra
de

d
re

ad
 t

im
e

(s
ec

)

(a) Degraded read time in
regular mode

(b) Degraded read time in
maintenance mode

Figure 11: Experiment B1: Overall performance.

0

2

4

6

8

10

16 32 64 128
Block size (MiB)(R

)
D

eg
ra

de
d

re
ad

 t
im

e
(s

ec
)

Flat Opt-R
Opt-M Trade-off-0
Trade-off-1 Trade-off-2

0

3

6

9

12

15

16 32 64 128
Block size (MiB)(M

)
D

eg
ra

de
d

 r
ea

d
ti

m
e

(s
ec

)
Flat Opt-R
Opt-M Trade-off-0
Trade-off-1 Trade-off-2

(a) Degraded read time in
regular mode

(b) Degraded read time in
maintenance mode

Figure 12: Experiment B2: Impact of block size.

report the results over 10 runs, with an error bar showing the
95% confidence interval based on the student’s t-distribution
(most error bars are invisible due to small variations).
Experiment B1: Overall performance. We first evaluate the
degraded read time in both regular and maintenance modes
for different data placements. Figure 11 shows the results. In
maintenance mode, Trade-off-0 has a slightly higher degraded
read time than Opt-M. When η decreases, the degraded read
time in regular mode also decreases, while the degraded read
time in maintenance mode increases, which complies with
our prior analysis (§V-A). In regular mode, Trade-off-2 has
almost the same repair time as Opt-R. For example, in regular
mode, Trade-off-2 reduces the degraded read times of Opt-M
and Flat by 68.5% and 74.6%, respectively. In maintenance
mode, Trade-off-0 slightly increases the degraded read time
of Opt-M by 13.1%, but reduces the degraded read time of
Opt-R by 31.7%. For Trade-off-1, in regular mode, it reduces
the degraded read time of Flat by 39.0%; in maintenance mode,
it reduces the degraded read time of Opt-R by 5.9%.
Experiment B2: Impact of block size. We study the impact
of block size on the degraded read time. We vary the block
size from 16 MiB to 128 MiB. Figure 12 shows the results.
When the block size increases, we observe a stable increase
of degraded read time in both regular and maintenance modes,
while we still observe a clear performance trade-off for different
data placements. For example, when the block size is 32 MiB,
Trade-off-1 reduces the degraded read time of Flat by 37.7%
in regular mode, while it reduces the degraded read time of
Opt-R by 6.2% in maintenance mode.
Experiment B3: Impact of cross-rack bandwidth. We study
the impact of cross-rack bandwidth on the degraded read time.
We vary the cross-rack bandwidth from 200 Mbps to 2 Gbps.
Figure 13 shows the results. The degraded read time in both
regular and maintenance modes fairly scales with the cross-
rack bandwidth, which justifies our assumption that cross-

0

4

8

12

16

20

0.2 0.5 1 2
Cross-rack bandwidth (Gbps)(R

)
D

eg
ra

de
d

re
ad

 t
im

e
(s

ec
)

Flat Opt-R
Opt-M Trade-off-0
Trade-off-1 Trade-off-2

0

6

12

18

24

30

0.2 0.5 1 2
Cross-rack bandwidth (Gbps)(M

)
D

eg
ra

de
d

 r
ea

d
ti

m
e

(s
ec

)

Flat Opt-R
Opt-M Trade-off-0
Trade-off-1 Trade-off-2

(a) Degraded read time in
regular mode

(b) Degraded read time in
maintenance mode

Figure 13: Experiment B3: Impact of cross-rack bandwidth.

rack bandwidth is the performance bottleneck (§II-A). For
example, when the cross-rack bandwidth is 500 Mbps, Trade-
off-1 reduces the degraded read time of Flat by 37.1% in regular
mode, while it reduces the degraded read time of Opt-R by
5.6% in maintenance mode.

VI. RELATED WORK

Erasure coding has been reportedly deployed in data centers
across geographical regions [10], [32]. Some studies focus
on minimizing cross-rack transfers for the single-block repair
[16]–[18], [34], [42], while some studies consider minimizing
the cross-rack transfers for redundancy transitioning [40], [41].
Our work considers minimizing the cross-rack transfers for the
single-block repair in both regular and maintenance modes and
studies their performance trade-offs.

Some theoretical studies propose LRC constructions with
different design objectives, such as minimizing the Hamming
distance [35]–[37], minimizing the repair I/Os [14], [30], and
minimizing the amount of network transfers in redundancy
transitioning [23]. On the applied side, LRCs have been
reportedly deployed in Azure [19], Facebook [33], Ceph [21],
and Google [20]. Our work focuses on data placement designs
of LRCs that balance the repair performance in regular and
maintenance modes.

Several studies explore the design trade-offs in erasure coding
from different aspects. Some studies focus on the trade-off
between repair performance and storage redundancy (e.g., in
regenerating codes [12], [28], and LRCs [21]). Wu et al. [41]
study the trade-off between repair and redundancy transitioning
performance. Our work considers the repair performance trade-
off between regular and maintenance modes.

VII. CONCLUSION

We analyze the performance trade-off in repair and mainte-
nance operations of LRCs in rack-based data centers. We design
a configurable data placement scheme that operates along trade-
off between repair and maintenance operations subject to fault
tolerance constraints. Our evaluation via numerical analysis
and testbed experiments demonstrates the effectiveness of our
data placement scheme in balancing the performance trade-off
between repair and maintenance operations.

ACKNOWLEDGEMENTS

This work was supported in part by National Natural Science
Foundation of China NSFC (62202440 and 62302175) and
Research Grants Council of Hong Kong (AoE/P-404/18). The
corresponding author is Si Wu.

REFERENCES

[1] Erasure coding in Ceph. https://docs.ceph.com/en/latest/rados/operations/
erasure-code/.

[2] Erasure coding in Hadoop 3.3.4. https://hadoop.apache.org/docs/r3.3.4/
hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html.

[3] Gurobi optimizer. http://www.gurobi.com/.
[4] Hadoop rack awareness. https://hadoop.apache.org/docs/r3.3.4/hadoop-

project-dist/hadoop-common/RackAwareness.html.
[5] Indicator constraints in Gurobi optimizer. https://www.gurobi.com/

documentation/current/refman/py model agc indicator.html.
[6] ISA-L. https://github.com/intel/isa-l.
[7] Wondershaper. https://github.com/magnific0/wondershaper.
[8] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N.

Vijaykumar. ShuffleWatcher: Shuffle-aware scheduling in multi-tenant
MapReduce clusters. In Proc. of USENIX ATC, 2014.

[9] Brian Beach. Backblaze Vaults: Zettabyte-scale cloud storage architecture.
https://www.backblaze.com/blog/vault-cloud-storage-architecture/, 2019.

[10] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus,
and Douglas Phillips. Giza: Erasure coding objects across global data
centers. In Proc. of the USENIX ATC, 2017.

[11] Mosharaf Chowdhury, Srikanth Kandula, and Stoica Ion. Leveraging
endpoint flexibility in data-intensive clusters. In Proc. of ACM SIGCOMM,
2013.

[12] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J
Wainwright, and Kannan Ramchandran. Network coding for distributed
storage systems. IEEE Trans. on Information Theory, 56(9):4539–4551,
2010.

[13] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-
Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability
in globally distributed storage systems. In Proc. of USENIX OSDI, 2010.

[14] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin.
On the locality of codeword symbols. IEEE Trans. on Information theory,
58(11):6925–6934, 2012.

[15] Shujie Han, Patrick P. C. Lee, Fan Xu, Yi Liu, Cheng He, and Jiongzhou
Liu. An In-Depth study of correlated failures in production SSD-Based
data centers. In Proc. of USENIX FAST, 2021.

[16] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun
Wang, and Wei Chen. Exploiting combined locality for wide-stripe
erasure coding in distributed storage. In Proc. of USENIX FAST, 2021.

[17] Yuchong Hu, Patrick P. C. Lee, and Xiaoyang Zhang. Double regenerating
codes for hierarchical data centers. In Proc. of IEEE ISIT, 2016.

[18] Yuchong Hu, Xiaolu Li, Mi Zhang, Patrick P. C. Lee, Xiaoyang Zhang,
Pan Zhou, and Dan Feng. Optimal repair layering for erasure-coded
data centers: From theory to practice. ACM Trans. on Storage, 13(4):33,
2017.

[19] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in
Windows Azure storage. In Proc. of USENIX ATC, 2012.

[20] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant.
Practical design considerations for wide locally recoverable codes (LRCs).
In Proc. of USENIX FAST, 2023.

[21] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo, and Alexander
Barg. On fault tolerance, locality, and optimality in locally repairable
codes. In Proc. of USENIX ATC, 2018.

[22] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong Hu. OpenEC:
Toward unified and configurable erasure coding management in distributed
storage systems. In Proc. of USENIX FAST, 2019.

[23] Francisco Maturana and KV Rashmi. Locally repairable convertible
codes: Erasure codes for efficient repair and conversion. In Proc. of
IEEE ISIT, 2023.

[24] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest
Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar,
Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s warm BLOB storage
system. In Proc. of USENIX OSDI, 2014.

[25] Aviv Nachman, Gala Yadgar, and Sarai Sheinvald. GoSeed: Generating
an optimal seeding plan for deduplicated storage. In Proc. of the USENIX
FAST, 2020.

[26] Andreas-Joachim Peters, Michal Kamil Simon, and Elvin Alin Sindrilaru.
Erasure coding for production in the EOS open storage system. In Proc.
of CHEP, 2019.

[27] Shaya Potter and Jason Nieh. Reducing downtime due to system
maintenance and upgrades. In Proc. of USENIX FAST, 2005.

[28] N. Prakash, Vitaly Abdrashitov, and Muriel Médard. The storage versus
repair-bandwidth trade-off for clustered storage systems. IEEE Trans.
on Information Theory, 64(8):5783–5805, 2018.

[29] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba
Borthakur, and Kannan Ramchandran. A solution to the network
challenges of data recovery in erasure-coded distributed storage systems:
A study on the facebook warehouse cluster. In Proc. of USENIX
HotStorage, 2013.

[30] Ankit Singh Rawat, Dimitris S Papailiopoulos, Alexandros G Dimakis,
and Sriram Vishwanath. Locality and availability in distributed storage.
IEEE Trans. on Information theory, 62(8):4481–4493, 2012.

[31] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[32] Jason K. Resch and James S. Plank. AONT-RS: Blending security and
performance in dispersed storage systems. In Proc. of the USENIX FAST,
2011.

[33] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba
Borthakur. XORing elephants: novel erasure codes for big data. Proc.
of the VLDB Endowment, 6(5):325–336, 2013.

[34] Zhirong Shen, Jiwu Shu, and Patrick P. C. Lee. Reconsidering single
failure recovery in clustered file systems. In Proc. of IEEE/IFIP DSN,
2016.

[35] Natalia Silberstein, Ankit Singh Rawat, O Ozan Koyluoglu, and Sriram
Vishwanath. Optimal locally repairable codes via rank-metric codes. In
Proc. of IEEE ISIT, 2013.

[36] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable
codes. IEEE Trans. on Information Theory, 60(8):4661–4676, 2014.

[37] Itzhak Tamo, Dimitris S Papailiopoulos, and Alexandros G Dimakis.
Optimal locally repairable codes and connections to matroid theory.
IEEE Trans. on Information theory, 62(12):6661–6671, 2012.

[38] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu
Padhye, and George Varghese. Global analytics in the face of bandwidth
and regulatory constraints. In Proc. of USENIX NSDI, 2015.

[39] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Proc. of IPTPS, 2002.

[40] Si Wu, Qingpeng Du, Patrick PC Lee, Yongkun Li, and Yinlong Xu.
Optimal data placement for stripe merging in locally repairable codes.
In IEEE INFOCOM, 2022.

[41] Si Wu, Zhirong Shen, and Patrick P. C. Lee. On the optimal repair-scaling
trade-off in locally repairable codes. In Proc. of IEEE INFOCOM, 2020.

[42] Guofeng Yang, Huangzhen Xue, Yunfei Gu, Chentao Wu, Jie Li, Minyi
Guo, Shiyi Li, Xin Xie, Yuanyuan Dong, and Yafei Zhao. XHR-Code:
An efficient wide stripe erasure code to reduce cross-rack overhead in
cloud storage systems. In Proc. of IEEE SRDS, 2022.

https://docs.ceph.com/en/latest/rados/operations/erasure-code/
https://docs.ceph.com/en/latest/rados/operations/erasure-code/
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
http://www.gurobi.com/
https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html
https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html
https://github.com/magnific0/wondershaper
https://www.backblaze.com/blog/vault-cloud-storage-architecture/

	Introduction
	Background
	Rack-based Data Centers
	Locally Repairable Codes (LRCs)
	Motivation

	Problem and Analysis
	Modeling a Data Placement
	Calculating the ADC
	Calculating the AMC

	Configurable Data Placement Scheme
	Design Details
	Trade-off Analysis

	Evaluation
	Numerical Analysis
	Testbed Evaluation

	Related Work
	Conclusion
	References

